On a parabolic symmetry of finite Coxeter groups

被引:1
|
作者
Hohlweg, C
Schocker, M
机构
[1] Univ Strasbourg 1, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
[3] Math Inst, Oxford OX1 3LB, England
关键词
D O I
10.1112/S0024609303002868
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (W, S) be a finite Coxeter system, and let J subset of or equal to S. Any w is an element of W has a unique factorization w=w(J)w(J), where w(J) belongs to the parabolic subgroup W-J generated by J, and w(J) is of minimal length in the coset wW(J). It is shown here that w(I) = w(J) if and only if w(I) = w(J), for all I, J subset of or equal to S. Furthermore, a similar symmetry property in arbitrary (W-I, W-J)-double cosets is conjectured, which links this result to the Solomon descent algebra of W.
引用
收藏
页码:289 / 293
页数:5
相关论文
共 50 条