Adaptive neuro-fuzzy inference system (ANFIS) approach for the irreversibility analysis of a domestic refrigerator system using LPG/TiO2 nanolubricant

被引:27
|
作者
Gill, Jatinder [1 ]
Singh, Jagdev [2 ]
Ohunakin, Olayinka S. [3 ,4 ]
Adelekan, Damola S. [3 ]
Atiba, Opemipo E. [3 ]
Nkiko, Mojisola O. [5 ]
Atayero, Aderemi A. [3 ,6 ]
机构
[1] IKGPTU, Dept Mech Engn, Kapurthala, Punjab, India
[2] BCET Gurdaspur, Fac Mech Engn Dept, Gurdaspur, Punjab, India
[3] Covenant Univ, Mech Engn Dept, Energy & Environm Res Grp TEERG, Ota, Nigeria
[4] Univ Johannesburg, Fac Engn & Built Environm, Senior Res Associate, Johannesburg, South Africa
[5] Elizade Univ, Dept Phys & Chem Sci, Ilara Mokin, Nigeria
[6] Covenant Univ, Dept Elect & Informat Engn, IoT Enabled Smart & Connected Communities SmartCU, Ota, Nigeria
关键词
LPG; ANN; TiO2; nanoparticle; Total irreversibility; ANFIS; 2nd law efficiency; ADIABATIC CAPILLARY TUBES; MASS-FLOW RATE; PERFORMANCE ANALYSIS; THERMODYNAMIC ANALYSIS; NETWORK APPROACH; LPG; REPLACEMENT; PREDICTION; WORKING; MIXTURE;
D O I
10.1016/j.egyr.2020.05.016
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This work presents an adaptive neuro-fuzzy inference system (ANFIS) artificial intelligence methodology of predicting the 2nd law efficiency and total irreversibility of a refrigeration system running on LPG/TiO2-nano-refrigerants. For this purpose, substractive clustering and grid partition approaches were utilized to train the ANFIS models required in estimating the 2nd law efficiency and total irreversibility using some experimental data. Furthermore, predictions of ANFIS models with subtractive clustering approach was found to be more accurate than ANFIS models predictions with grid partition approach. The predictions of ANFIS models with subtractive clustering approach were also compared with experimental results that were not included in the model training and predictions of already existing ANN models of authors previous publication. The comparison of variance, root mean square error (RMSE), mean absolute percentage error (MAPE) were 0.996-0.999, 0.0296-0.1726 W and 0.108-0.176 % marginal variability values. These results indicate that the ANFIS model with subtractive clustering approach having cluster radii 0.7 and 0.5 can predict the 2nd law efficiency and total irreversibility respectively, with higher accuracy than authors' previous publication ANN models. (C) 2020 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1405 / 1417
页数:13
相关论文
共 50 条
  • [1] LANDSLIDE SUSCEPTIBILITY MAPPING BY USING AN ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Choi, J.
    Lee, Y. K.
    Lee, M. J.
    Kim, K.
    Park, Y.
    Kim, S.
    Goo, S.
    Cho, M.
    Sim, J.
    Won, J. S.
    [J]. 2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1989 - 1992
  • [2] Fuzzy membership function design: An adaptive neuro-fuzzy inference system (ANFIS) based approach
    Kabir, Monika
    Kabir, Mir Md Jahangir
    [J]. 2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [3] An adaptive neuro-fuzzy inference system (ANFIS) approach for measuring country sustainability performance
    Tan, Yongtao
    Shuai, Chenyang
    Jiao, Liudan
    Shen, Liyin
    [J]. ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2017, 65 : 29 - 40
  • [4] A Hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) Approach for Professional Bloggers Classification
    Asim, Yousra
    Raza, Basit
    Malik, Ahmad Kamran
    Shahid, Ahmad R.
    Faheem, Muhammad
    Kumar, Yogan Jaya
    [J]. 2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 88 - 93
  • [5] Detection Of Forearm Movements Using Wavelets And Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Guvenc, Seyit Ahmet
    Demir, Mengu
    Ulutas, Mustafa
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS (INISTA 2014), 2014, : 192 - 196
  • [6] ESTIMATION OF SUBSURFACE STRATA OF EARTH USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Srinivas, Y.
    Raj, A. Stanley
    Oliver, D. Hudson
    Muthuraj, D.
    Chandrasekar, N.
    [J]. ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2012, 47 (01): : 78 - 89
  • [7] Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS)
    Mohandes, M.
    Rehman, S.
    Rahman, S. M.
    [J]. APPLIED ENERGY, 2011, 88 (11) : 4024 - 4032
  • [8] Estimation of subsurface strata of earth using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Y. Srinivas
    A. Stanley Raj
    D. Hudson Oliver
    D. Muthuraj
    N. Chandrasekar
    [J]. Acta Geodaetica et Geophysica Hungarica, 2012, 47 : 78 - 89
  • [9] Optimization of Photosynthetic Rate Parameters using Adaptive Neuro-Fuzzy Inference System (ANFIS)
    Valenzuela, Ira C.
    Baldovino, Renann G.
    Bandala, Argel A.
    Dadios, Elmer P.
    [J]. 2017 INTERNATIONAL CONFERENCE ON COMPUTER AND APPLICATIONS (ICCA), 2017, : 129 - 134
  • [10] Discharge predicted in compound channels using adaptive neuro-fuzzy inference system (ANFIS)
    Khattab, Noor I. I.
    Mohammed, Ahmed Y. Y.
    Mala Obaida, Arwa A. A.
    [J]. OPEN ENGINEERING, 2023, 13 (01):