Collinear orbital antiferromagnetic order and magnetoelectricity in quasi-two-dimensional itinerant-electron paramagnets, ferromagnets, and antiferromagnets

被引:8
|
作者
Winkler, R. [1 ,2 ,3 ,4 ,5 ]
Zuelicke, U. [1 ,2 ,6 ,7 ,8 ]
机构
[1] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[2] Argonne Natl Lab, Div Mat Sci, 9700 S Cass Ave, Argonne, IL 60439 USA
[3] Univ Illinois, Mat Res Lab, Urbana, IL 61801 USA
[4] Univ Illinois, Mat Sci & Engn, Urbana, IL 61801 USA
[5] Univ Regensburg, Inst Theoret Phys, D-93040 Regensburg, Germany
[6] Victoria Univ Wellington, Sch Chem & Phys Sci, POB 600, Wellington 6140, New Zealand
[7] Victoria Univ Wellington, MacDiarmid Inst Adv Mat & Nanotechnol, POB 600, Wellington 6140, New Zealand
[8] Univ Calif Santa Barbara, Kavli Inst Theoret Phys, Santa Barbara, CA 93106 USA
来源
PHYSICAL REVIEW RESEARCH | 2020年 / 2卷 / 04期
关键词
MAGNETIC SYMMETRY; BAND-STRUCTURE; FIELD CONTROL; QUANTUM-WELL; SUSCEPTIBILITY; TRANSITION; SYSTEMS;
D O I
10.1103/PhysRevResearch.2.043060
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a comprehensive quantitative theory for magnetoelectricity in magnetically ordered quasi-twodimensional (quasi-2D) systems whereby in thermal equilibrium an electric field can induce a magnetization and a magnetic field can induce an electric polarization. This effect requires that both space-inversion and time-reversal symmetry are broken. Antiferromagnetic order plays a central role in this theory. We define a Neel operator tau such that a nonzero expectation value <tau > signals collinear antiferromagnetic order in the same way a magnetization signals ferromagnetic order. While a magnetization is even under space inversion and odd under time reversal, the operator t describes a toroidal moment that is odd both under space inversion and under time reversal. Thus the magnetization and the toroidal moment <tau > quantify complementary aspects of collinear magnetic order in solids. Focusing on quasi-2D systems, itinerant-electron ferromagnetic order can be attributed to dipolar equilibrium currents that give rise to a magnetization. In the same way, antiferromagnetic order arises from quadrupolar equilibrium currents that generate the toroidal moment <tau >. In the magnetoelectric effect, the electric-field-induced magnetization can then be attributed to the electric manipulation of the quadrupolar equilibrium currents. We develop a k center dot p envelope-function theory for the antiferromagnetic diamond structure that allows us to derive explicit expressions for the Neel operator t. Considering ferromagnetic zincblende structures and antiferromagnetic diamond structures, we derive quantitative expressions for the magnetoelectric responses due to electric and magnetic fields that reveal explicitly the inherent duality of these responses required by thermodynamics. Magnetoelectricity is found to be small in realistic calculations for quasi-2D electron systems. The magnetoelectric response of quasi-2D hole systems turns out to be sizable, however, with moderate electric fields being able to induce a magnetic moment of one Bohr magneton per charge carrier. Our theory provides a broad framework for the manipulation of magnetic order by means of external fields.
引用
收藏
页数:30
相关论文
共 14 条
  • [1] Spin-fluctuation theory of quasi-two-dimensional itinerant-electron ferromagnets
    Takahashi, Y
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1997, 9 (47) : 10359 - 10372
  • [2] Quantum Criticality in Quasi-Two-Dimensional Itinerant Antiferromagnets
    Varma, C. M.
    PHYSICAL REVIEW LETTERS, 2015, 115 (18)
  • [3] Quantum critical response function in quasi-two-dimensional itinerant antiferromagnets
    Varma, C. M.
    Zhu, Lijun
    Schroeder, Almut
    PHYSICAL REVIEW B, 2015, 92 (15)
  • [5] Dimensional modulation of spontaneous magnetic order in quasi-two-dimensional quantum antiferromagnets
    Furuya, Shunsuke C.
    Dupont, Maxime
    Capponi, Sylvain
    Laflorencie, Nicolas
    Giamarchi, Thierry
    PHYSICAL REVIEW B, 2016, 94 (14)
  • [6] Role of electron-lattice couplings on charge order in quasi-two-dimensional organic conductors
    Tanaka, Yasuhiro
    Yonemitsu, Kenji
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [7] Impact of antiferromagnetic order on Landau-level splitting of quasi-two-dimensional Dirac fermions in EuMnBi2
    Masuda, H.
    Sakai, H.
    Tokunaga, M.
    Ochi, M.
    Takahashi, H.
    Akiba, K.
    Miyake, A.
    Kuroki, K.
    Tokura, Y.
    Ishiwata, S.
    PHYSICAL REVIEW B, 2018, 98 (16)
  • [8] Splitting of antiferromagnetic resonance modes in the quasi-two-dimensional collinear antiferromagnet Cu(en)(H2O)2 SO4
    Glazkov, V. N.
    Krasnikova, Yu, V
    Rodygina, I. K.
    Chovan, J.
    Tarasenko, R.
    Orendacova, A.
    PHYSICAL REVIEW B, 2020, 101 (01)
  • [9] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets*
    Sun, Guangyu
    Ma, Nvsen
    Zhao, Bowen
    Sandvik, Anders W.
    Meng, Zi Yang
    CHINESE PHYSICS B, 2021, 30 (06)
  • [10] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
    孙光宇
    马女森
    赵博文
    Anders W.Sandvik
    孟子杨
    Chinese Physics B, 2021, (06) : 646 - 658