Local torsion on abelian surfaces with real multiplication by Q(√5)

被引:0
|
作者
Gamzon, Adam [1 ]
机构
[1] Hebrew Univ Jerusalem, Einstein Inst Math, IL-91904 Jerusalem, Israel
关键词
Abelian surfaces; torsion points; deformations of Galois representations; GROUP SCHEMES; REPRESENTATIONS; VARIETIES;
D O I
10.1142/S1793042114500572
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Fix an integer d >= 1. In 2008, David and Weston showed that, on average, an elliptic curve over Q picks up a nontrivial p-torsion point defined over a finite extension K of the p-adics of degree at most d for only finitely many primes p. This paper proves an analogous averaging result for principally polarized abelian surfaces A over Q with real multiplication by Q(root 5) and a level-root 5 structure. Furthermore, we indicate how the result on abelian surfaces with real multiplication relates to the deformation theory of modular Galois representations.
引用
收藏
页码:1807 / 1827
页数:21
相关论文
共 50 条