Dependency of Critical Behaviors on Different Order Parameters for Antiferromagnetic Heisenberg Model on Three-Dimensional Regular Lattice

被引:0
|
作者
Yang, Jae-Suk [2 ]
Yeon, Kyu-Hwang [3 ]
Yu, Seong Cho [3 ]
Kwak, Wooseop [1 ]
机构
[1] Chosun Univ, Dept Phys, Kwangju 501759, South Korea
[2] Korea Univ, Dept Phys, Seoul 136713, South Korea
[3] Chungbuk Natl Univ, Dept Phys, Chonju 361763, South Korea
关键词
Antiferromagnetization; Heisenberg model; Monte Carlo simulation; order parameter; MONTE-CARLO; PHASE-TRANSITIONS; ISING-MODEL; XY-MODEL; DYNAMICS; POTTS; FIELD;
D O I
10.1109/TMAG.2009.2018947
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetization is measured in experiments for both ferromagnetic and antiferromagnetic materials to investigate the magnetic properties of materials, and the susceptibility of total magnetization as a function of external field is used to determine Neel or Cued temperatures. In the Monte Carlo simulation, it is important to define the proper order parameters to describe the spin model, where the magnetization is used as an order parameter for ferromagnetic spin model and the staggered magnetization is used as an order parameter for the antiferromagnetic spin model without geometrical frustration. However, it is difficult to define an order parameter for frustrated spin models. We perform the Monte Carlo simulation for the antiferromagnetic Heisenberg spin model using the damage spreading as an order parameter, and also perform simulation using both the magnetization and the staggered magnetization as order parameters. Then, we measure the critical temperatures and the critical exponents on three-dimensional regular lattice estimated by different order parameters, and then study the dependency of critical behaviors on different order parameters for the antiferromagnetic Heisenberg spin models.
引用
下载
收藏
页码:2651 / 2654
页数:4
相关论文
共 50 条
  • [1] Phase transition in the three-dimensional anisotropic Heisenberg antiferromagnetic model
    de Sousa, JR
    Plascak, JA
    PHYSICS LETTERS A, 1997, 237 (1-2) : 66 - 68
  • [2] Phase transition in the three-dimensional anisotropic Heisenberg antiferromagnetic model
    Ricardo De Sousa, J.
    Plascak, J.A.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 1997, 237 (1-2): : 66 - 68
  • [3] Critical behavior of the quantum Heisenberg model on three-dimensional diamond-type hierarchical lattice
    Zou Wei-Ke
    Kong Xiang-Mu
    Wang Chun-Yang
    Gao Zhong-Yang
    ACTA PHYSICA SINICA, 2010, 59 (07) : 4874 - 4879
  • [4] Monte Carlo investigation of the critical properties of a three-dimensional frustrated Heisenberg model on a triangular lattice
    Murtazaev, A. K.
    Ramazanov, M. K.
    Badiev, M. K.
    LOW TEMPERATURE PHYSICS, 2009, 35 (07) : 521 - 525
  • [5] Quantum phase transition in the three-dimensional anisotropic frustrated Heisenberg antiferromagnetic model
    Viana, J. Roberto
    de Sousa, J. Ricardo
    Continentino, M. A.
    PHYSICAL REVIEW B, 2008, 77 (17)
  • [6] Computation of the dynamic critical exponent of the three-dimensional Heisenberg model
    Astillero, A.
    Ruiz-Lorenzo, J. J.
    PHYSICAL REVIEW E, 2019, 100 (06)
  • [7] Theory of magnetic order in the three-dimensional spatially anisotropic Heisenberg model
    Siurakshina, L
    Ihle, D
    Hayn, R
    PHYSICAL REVIEW B, 2000, 61 (21): : 14601 - 14606
  • [8] Critical behavior of the three-dimensional random-anisotropy Heisenberg model
    Ruiz-Lorenzo, J. J.
    Dudka, M.
    Holovatch, Yu
    PHYSICAL REVIEW E, 2022, 106 (03)
  • [9] Three-dimensional vortices in the Heisenberg model
    A. B. Borisov
    Theoretical and Mathematical Physics, 2021, 208 : 1256 - 1264
  • [10] THREE-DIMENSIONAL VORTICES IN THE HEISENBERG MODEL
    Borisov, A. B.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 208 (03) : 1256 - 1264