The application of SMA spring actuators to a lightweight modular compliant surface bio-inspired robot

被引:0
|
作者
Stone, DL [1 ]
Cranney, J [1 ]
Liang, R [1 ]
Taya, M [1 ]
机构
[1] Unmanned Syst Technol Lab Inc, Coeur Dalene, ID 83814 USA
关键词
shape memory alloy; SMA spring actuators; compliant surface robotics; bio-inspired; leg extension; leg-wheel vehicle; leg extension actuator; modular; unmanned ground vehicle; robot;
D O I
10.1117/12.547773
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The DARPA Sponsored Compliant Surface Robotics (CSR) program pursues development of a high mobility, lightweight, modular, morph-able robot for military forces in the field and for other industrial uses. The USTLAB and University of Washington Center for Intelligent Materials and Systems (CIMS) effort builds on USTLAB proof of concept feasibility studies and demonstration of a 4, 6, or 8 wheeled modular vehicle with articulated leg-wheel assemblies. A collaborative effort between USTLAB and UW-CIMS explored the application of Shape Memory Alloy Nickel Titanium Alloy springs to a leg extension actuator capable of actuating with 4.5 Newton force over a 50 mm stroke. At the completion of Phase II, we have completed mechanical and electronics engineering design and achieved conventional actuation which currently enable active articulation, enabling autonomous reconfiguration for a wide variety of terrains, including upside down operations (in case of flip over), have developed a leg extension actuator demonstration model, and we have positioned our team to pursue a small vehicle with leg extension actuators in follow on work. The CSR vehicle's modular spider-like configuration facilitates adaptation to many uses and compliance over rugged terrain. The developmental process, actuator and vehicle characteristics will be discussed.
引用
收藏
页码:110 / 119
页数:10
相关论文
共 50 条
  • [1] The development of a lightweight modular compliant surface bio-inspired robot
    Stone, DL
    Cranney, J
    UNMANNED GROUND VEHICLE TECHNOLOGY VI, 2004, 5422 : 145 - 155
  • [2] A bio-inspired apodal and modular robot
    Guimaraes, Pedro P. S.
    Nunes, Matheus M.
    Galembeck, Thais F.
    Kalejaiye, Lucas Bamidele T.
    Tenorio, Ruan P. A.
    Viana, Dianne Magalhaes
    de Barros Vidal, Flavio
    Koike, Carla M. C. E. C.
    PROCEEDINGS OF 13TH LATIN AMERICAN ROBOTICS SYMPOSIUM AND 4TH BRAZILIAN SYMPOSIUM ON ROBOTICS - LARS/SBR 2016, 2016, : 61 - 66
  • [3] Bio-inspired locomotion for a modular snake robot
    Zhang, Shubo
    Guo, Yi
    BIO-INSPIRED/BIOMIMETIC SENSOR TECHNOLOGIES AND APPLICATIONS, 2009, 7321
  • [4] A Bio-Inspired Quadruped Robot with a Global Compliant Spine
    Zhang, Xiuli
    Yu, Hongbo
    Liu, Boyu
    Gu, Xiaoxu
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2013, : 1312 - 1316
  • [5] A survey of bio-inspired compliant legged robot designs
    Zhou, Xiaodong
    Bi, Shusheng
    BIOINSPIRATION & BIOMIMETICS, 2012, 7 (04)
  • [6] Bio-Inspired Control System for Fingers Actuated by Multiple SMA Actuators
    Uleru, George-Iulian
    Hulea, Mircea
    Burlacu, Adrian
    BIOMIMETICS, 2022, 7 (02)
  • [7] Climbot: A Modular Bio-inspired Biped Climbing Robot
    Guan, Yisheng
    Jiang, Li
    Zhu, Haifei
    Zhou, Xuefeng
    Cai, Chuanwu
    Wu, Wenqiang
    Li, Zhanchu
    Zhang, Hong
    Zhang, Xianmin
    2011 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2011, : 1473 - 1478
  • [8] Flexible Entrainment in a Bio-inspired Modular Oscillator for Modular Robot Locomotion
    Herrero-Carron, Fernando
    Rodriguez, Francisco B.
    Varona, Pablo
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2011, PT II, 2011, 6692 : 532 - 539
  • [9] Legged locomotion of a bio-inspired lightweight robot on granular media
    Qian, F.
    Zhang, T.
    Li, C.
    Shen, J.
    Hoover, A. M.
    Birkmeyer, P.
    Pullin, A.
    Fearing, R. S.
    Goldman, D., I
    Masarati, P.
    INTEGRATIVE AND COMPARATIVE BIOLOGY, 2012, 52 : E143 - E143
  • [10] Design of a Bio-Inspired Controller to Operate a Modular Robot Autonomously
    Hernandez, Henry
    Moreno, Rodrigo
    Faina, Andres
    Gomez, Jonatan
    ADVANCES IN ARTIFICIAL INTELLIGENCE - IBERAMIA 2018, 2018, 11238 : 314 - 325