Efficient Greenhouse Temperature Control with Data-Driven Robust Model Predictive

被引:0
|
作者
Chen, Wei-Han [1 ]
You, Fengqi [1 ]
机构
[1] Cornell Univ, Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
关键词
DECISION-MAKING; BIG DATA; OPTIMIZATION; UNCERTAINTY; CLIMATE; ENERGY; FRAMEWORK; ALGORITHM;
D O I
10.23919/acc45564.2020.9147701
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Appropriate greenhouse temperature should be maintained to ensure crop production while minimizing energy consumption. Even though weather forecasts could provide a certain amount of information to improve control performance, it is not perfect and forecast error may cause the temperature to deviate from the acceptable range. To inherent uncertainty in weather that affects control accuracy, this paper develops a data-driven robust model predictive control (DDRMPC) approach for greenhouse temperature control. The dynamic model is obtained from thermal resistance-capacitance modeling derived by the Building Resistance-Capacitance Modeling (BRCM) toolbox. Uncertainty sets of ambient temperature and solar radiation are captured by support vector clustering technique, and they are further tuned for better quality by training-calibration procedure. A case study shows that the DDRMPC has better control performance compared to rule-based control, certainty equivalent MPC, and robust MPC. DDRMPC approach ends up with 12% less total energy consumption than rule-based control strategy.
引用
下载
收藏
页码:1986 / 1991
页数:6
相关论文
共 50 条
  • [1] Data-driven robust model predictive control for greenhouse temperature control and energy utilisation assessment
    Mahmood, Farhat
    Govindan, Rajesh
    Bermak, Amine
    Yang, David
    Al-Ansari, Tareq
    APPLIED ENERGY, 2023, 343
  • [2] Robust analysis for data-driven model predictive control
    Jianwang, Hong
    Ramirez-Mendoza, Ricardo A.
    Xiaojun, Tang
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2021, 9 (01) : 393 - 404
  • [3] Robust Model Predictive Control with Data-Driven Koopman Operators
    Mamakoukas, Giorgos
    Di Cairano, Stefano
    Vinod, Abraham P.
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3885 - 3892
  • [4] Semiclosed Greenhouse Climate Control Under Uncertainty via Machine Learning and Data-Driven Robust Model Predictive Control
    Chen, Wei-Han
    You, Fengqi
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2022, 30 (03) : 1186 - 1197
  • [5] Data-Driven Distributionally Robust Bounds for Stochastic Model Predictive Control
    Fochesato, Marta
    Lygeros, John
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 3611 - 3616
  • [6] LMI-based Data-Driven Robust Model Predictive Control
    Hoang Hai Nguyen
    Friedel, Maurice
    Findeisen, Rolf
    IFAC PAPERSONLINE, 2023, 56 (02): : 4783 - 4788
  • [7] Data-driven Scenario Selection for Multistage Robust Model Predictive Control
    Krishnamoorthy, Dinesh
    Thombre, Mandar
    Skogestad, Sigurd
    Jaschke, Johannes
    IFAC PAPERSONLINE, 2018, 51 (20): : 462 - 468
  • [8] Robust Stability Analysis of a Simple Data-Driven Model Predictive Control Approach
    Bongard, Joscha
    Berberich, Julian
    Koehler, Johannes
    Allgoewer, Frank
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (05) : 2625 - 2637
  • [9] Multistage Model Predictive Control based on Data-Driven Distributionally Robust Optimization
    Lu, Shuwen
    You, Fengqi
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1907 - 1912
  • [10] Constrained robust model predictive control embedded with a new data-driven technique
    Yang, L.
    Lu, J.
    Xu, Y.
    Li, D.
    Xi, Y.
    IET CONTROL THEORY AND APPLICATIONS, 2020, 14 (16): : 2395 - 2405