Bivariate Conway-Maxwell Poisson Distributions with Given Marginals and Correlation

被引:5
|
作者
Ong, Seng Huat [1 ]
Gupta, Ramesh C. [2 ]
Ma, Tiefeng [3 ]
Sim, Shin Zhu [4 ]
机构
[1] UCSI Univ, Dept Actuarial Sci & Appl Stat, Kuala Lumpur 56000, Malaysia
[2] Univ Maine, Dept Math & Stat, Orono, ME 04469 USA
[3] Southwestern Univ Finance & Econ, Sch Stat, Chengdu 611130, Sichuan, Peoples R China
[4] Univ Tunku Abdul Rahman, Dept Math & Actuarial Sci, Kajang 43000, Selangor, Malaysia
关键词
Conway-Maxwell Poisson; Negative and positive correlation; Positive likelihood ratio dependence; Test of independence; Likelihood ratio test; Score test; Weighted distribution; CORRELATION CURVES; SARMANOV FAMILY; DISCRETE-DATA; ASSOCIATION; DEPENDENCE;
D O I
10.1007/s42519-020-00141-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Conway-Maxwell Poisson (CMP) distribution is a popular model for analyzing data that exhibit under or over dispersion. In this article, we construct bivariate CMP distributions with given marginal CMP distributions and range of correlation coefficient over (- 1, 1) based on the Sarmanov family of bivariate distributions. One of the constructions is based on a general method for weighted distributions. The dependence property is examined. Parameter estimation, tests of independence and adequacy of model and a Monte Carlo power study are discussed. A real data set is used to exemplify its usefulness with comparison to other bivariate models.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Bivariate Conway–Maxwell Poisson Distributions with Given Marginals and Correlation
    Seng Huat Ong
    Ramesh C. Gupta
    Tiefeng Ma
    Shin Zhu Sim
    [J]. Journal of Statistical Theory and Practice, 2021, 15
  • [3] BIVARIATE DISTRIBUTIONS WITH GIVEN MARGINALS
    WHITT, W
    [J]. ANNALS OF STATISTICS, 1976, 4 (06): : 1280 - 1289
  • [4] Analysis of discrete data by Conway-Maxwell Poisson distribution
    Gupta, Ramesh C.
    Sim, S. Z.
    Ong, S. H.
    [J]. ASTA-ADVANCES IN STATISTICAL ANALYSIS, 2014, 98 (04) : 327 - 343
  • [5] Characterizing the Performance of the Conway-Maxwell Poisson Generalized Linear Model
    Francis, Royce A.
    Geedipally, Srinivas Reddy
    Guikema, Seth D.
    Dhavala, Soma Sekhar
    Lord, Dominique
    LaRocca, Sarah
    [J]. RISK ANALYSIS, 2012, 32 (01) : 167 - 183
  • [6] Stein estimation in the Conway-Maxwell Poisson model with correlated regressors
    Sami, Faiza
    Amin, Muhammad
    Aljeddani, Sadiah M. A.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2024, 11 (07): : 49 - 56
  • [7] Compound Conway-Maxwell Poisson Gamma Distribution: Properties and Estimation
    Merupula, Jahnavi
    Vaidyanathan, V. S.
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2024, 53 (02) : 32 - 47
  • [8] Dynamic Modeling of Spike Count Data With Conway-Maxwell Poisson Variability
    Wei, Ganchao
    Stevenson, Ian H.
    [J]. NEURAL COMPUTATION, 2023, 35 (07) : 1187 - 1208
  • [9] On the ridge estimation of the Conway-Maxwell Poisson regression model with multicollinearity: Methods and applications
    Sami, Faiza
    Amin, Muhammad
    Butt, Muhammad Moeen
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (01):
  • [10] Jackknifed Liu-type estimator in the Conway-Maxwell Poisson regression model
    Rasheed, Husam AbdulRazzak
    Sadik, Nazik J.
    Algamal, Zakariya Yahya
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 3153 - 3168