Comparison of LiDAR and Stereo Photogrammetric Point Clouds for Change Detection

被引:9
|
作者
Basgall, Paul L. [1 ]
Kruse, Fred A. [2 ]
Olsen, Richard C. [2 ]
机构
[1] Natl Geospatial Intelligence Agcy, 3838 Vogel Rd, Arnold, MO 63010 USA
[2] US Navy, Postgrad Sch, Dept Phys, Ctr Remote Sensing, Monterey, CA 93943 USA
关键词
LiDAR; Point Cloud; Photogrammetry; Change Detection; Image Registration; Fusion;
D O I
10.1117/12.2049856
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The advent of Light Detection and Ranging (LiDAR) point cloud collection has significantly improved the ability to model the world in precise, fine, three dimensional detail. The objective of this research was to demonstrate accurate, foundational methods for fusing LiDAR data and photogrammetric imagery and their potential for change detection. The scope of the project was to investigate optical image-to-LiDAR registration methods, focusing on dissimilar image types including high resolution aerial frame and WorldView-1 satellite and LiDAR with varying point densities. An innovative optical image-to-LiDAR data registration process was established. Comparison of stereo imagery point cloud data to the LiDAR point cloud using a 90% confidence interval highlighted changes that included small scale (<50cm), sensor dependent change and large scale, new home construction change.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Comparing Lidar and Photogrammetric Point Clouds
    Schwind, Michael
    [J]. GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2018, 32 (01): : 25 - 27
  • [2] OPTIMAL TRANSPORT FOR CHANGE DETECTION ON LIDAR POINT CLOUDS
    Fiorucci, Marco
    Naylor, Peter
    Yamada, Makoto
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 982 - 985
  • [3] Classification and Change Detection in Mobile Mapping LiDAR Point Clouds
    Mirjana Voelsen
    Julia Schachtschneider
    Claus Brenner
    [J]. PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2021, 89 : 195 - 207
  • [4] Classification and Change Detection in Mobile Mapping LiDAR Point Clouds
    Voelsen, Mirjana
    Schachtschneider, Julia
    Brenner, Claus
    [J]. PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2021, 89 (03): : 195 - 207
  • [5] Comparison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure
    Filippelli, Steven K.
    Lefsky, Michael A.
    Rocca, Monique E.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 224 : 154 - 166
  • [6] Extraction of Dense Urban Buildings From Photogrammetric and LiDAR Point Clouds
    Guo, Liang
    Deng, Xingdong
    Liu, Yang
    He, Huagui
    Lin, Hong
    Qiu, Guangxin
    Yang, Weijun
    [J]. IEEE ACCESS, 2021, 9 : 111823 - 111832
  • [7] Quality-based registration refinement of airborne LiDAR and photogrammetric point clouds
    Toschi, I
    Farella, E. M.
    Welponer, M.
    Remondino, F.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 172 : 160 - 170
  • [8] Classification of Photogrammetric and Airborne LiDAR Point Clouds Using Machine Learning Algorithms
    Duran, Zaide
    Ozcan, Kubra
    Atik, Muhammed Enes
    [J]. DRONES, 2021, 5 (04)
  • [9] Instant Object Detection in Lidar Point Clouds
    Borcs, Attila
    Nagy, Balazs
    Benedek, Csaba
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 992 - 996
  • [10] Detection of Cars in Mobile Lidar Point Clouds
    Li, Guorui
    Fang, Xinwei
    Khoshelham, Kourosh
    Elberink, Sander Oude
    [J]. 2018 3RD IEEE INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION ENGINEERING (ICITE), 2018, : 259 - 263