Adaptive neuro-fuzzy inference system (ANFIS) to predict CI engine parameters fueled with nano-particles additive to diesel fuel

被引:5
|
作者
Ghanbari, M. [1 ]
Najafi, G. [1 ]
Ghobadian, B. [1 ]
Mamat, R. [2 ]
Noor, M. M. [2 ,3 ]
Moosavian, A. [1 ]
机构
[1] Tarbiat Modares Univ, Mech Biosyst Eng Dept, Tehran, Iran
[2] Univ Malaysia Pahang, Fac Mech Engn, Pahang, Malaysia
[3] Univ So Queensland, Dept Mech Engn, Toowoomba, Qld 4350, Australia
关键词
EXHAUST EMISSIONS; GASOLINE-ENGINE; PERFORMANCE; ETHANOL; BLENDS; MACHINE;
D O I
10.1088/1757-899X/100/1/012070
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper studies the use of adaptive neuro-fuzzy inference system (ANFIS) to predict the performance parameters and exhaust emissions of a diesel engine operating on nanodiesel blended fuels. In order to predict the engine parameters, the whole experimental data were randomly divided into training and testing data. For ANFIS modelling, Gaussian curve membership function (gaussmf) and 200 training epochs (iteration) were found to be optimum choices for training process. The results demonstrate that ANFIS is capable of predicting the diesel engine performance and emissions. In the experimental step, Carbon nano tubes (CNT) (40, 80 and 120 ppm) and nano silver particles (40, 80 and 120 ppm) with nanostructure were prepared and added as additive to the diesel fuel. Six cylinders, four-stroke diesel engine was fuelled with these new blended fuels and operated at different engine speeds. Experimental test results indicated the fact that adding nano particles to diesel fuel, increased diesel engine power and torque output. For nano-diesel it was found that the brake specific fuel consumption (bsfc) was decreased compared to the net diesel fuel. The results proved that with increase of nano particles concentrations (from 40 ppm to 120 ppm) in diesel fuel, CO2 emission increased. CO emission in diesel fuel with nano-particles was lower significantly compared to pure diesel fuel. UHC emission with silver nano-diesel blended fuel decreased while with fuels that contains CNT nano particles increased. The trend of NOx emission was inverse compared to the UHC emission. With adding nano particles to the blended fuels, NOx increased compared to the net diesel fuel. The tests revealed that silver & CNT nano particles can be used as additive in diesel fuel to improve combustion of the fuel and reduce the exhaust emissions significantly.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Solid oxide fuel cell (SOFC) control strategy enhancement by adaptive neuro-fuzzy inference system (ANFIS)
    Ramadan, Sameh
    Al-Gabalaw, Mostafa
    EL-Shimy, Mohamed
    Emarah, Adel
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [22] Fuzzy membership function design: An adaptive neuro-fuzzy inference system (ANFIS) based approach
    Kabir, Monika
    Kabir, Mir Md Jahangir
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [23] Modeling the concentration of suspended particles by fuzzy inference system (FIS) and adaptive neuro-fuzzy inference system (ANFIS) techniques: A case study in the metro stations
    Fard, Zahra Sadat Mousavi
    Mahabadi, Hassan Asilian
    Khajehnasiri, Farahnaz
    Rashidi, Mohammad Amin
    ENVIRONMENTAL HEALTH ENGINEERING AND MANAGEMENT JOURNAL, 2023, 10 (03): : 311 - 319
  • [24] Prediction of optimal mild steel weld parameters using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Oladotun Oluyomi Lofinmakin
    Samuel Oro-oghene Sada
    Ikuobase Emovon
    Olusegun David Samuel
    Sunday Ayoola Oke
    The International Journal of Advanced Manufacturing Technology, 2024, 131 : 1203 - 1210
  • [25] Prediction of optimal mild steel weld parameters using the Adaptive Neuro-Fuzzy Inference System (ANFIS) technique
    Lofinmakin, Oladotun Oluyomi
    Sada, Samuel Oro-oghene
    Emovon, Ikuobase
    Samuel, Olusegun David
    Oke, Sunday Ayoola
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 131 (3-4): : 1203 - 1210
  • [26] An adaptive neuro-fuzzy inference system (ANFIS) model for high pressure die casting
    Tsoukalas, V. D.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2011, 225 (B12) : 2276 - 2286
  • [27] ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) FOR FORECASTING: THE CASE OF THE CZECH STOCK MARKET
    Jankova, Zuzana
    15TH ANNUAL INTERNATIONAL BATA CONFERENCE FOR PH.D. STUDENTS AND YOUNG RESEARCHERS (DOKBAT), 2019, : 457 - 465
  • [28] A Hybrid Adaptive Neuro-Fuzzy Inference System (ANFIS) Approach for Professional Bloggers Classification
    Asim, Yousra
    Raza, Basit
    Malik, Ahmad Kamran
    Shahid, Ahmad R.
    Faheem, Muhammad
    Kumar, Yogan Jaya
    2019 22ND IEEE INTERNATIONAL MULTI TOPIC CONFERENCE (INMIC), 2019, : 88 - 93
  • [29] An adaptive neuro-fuzzy inference system (ANFIS) approach for measuring country sustainability performance
    Tan, Yongtao
    Shuai, Chenyang
    Jiao, Liudan
    Shen, Liyin
    ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2017, 65 : 29 - 40
  • [30] ESTIMATION OF SUBSURFACE STRATA OF EARTH USING ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)
    Srinivas, Y.
    Raj, A. Stanley
    Oliver, D. Hudson
    Muthuraj, D.
    Chandrasekar, N.
    ACTA GEODAETICA ET GEOPHYSICA HUNGARICA, 2012, 47 (01): : 78 - 89