SPLIT QUATERNIONS AND INTEGER-VALUED POLYNOMIALS

被引:1
|
作者
Cigliola, A. [1 ]
Loper, K. A. [2 ]
Werner, N. J. [2 ]
机构
[1] Univ Roma Tre, Dipartimento Matemat & Fis, Rome, Italy
[2] Ohio State Univ, Newark, OH USA
关键词
Integer-valued polynomial; Noncommutative; Quaternion; MATRICES; RINGS;
D O I
10.1080/00927872.2014.897561
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The integer split quaternions form a noncommutative algebra over Z. We describe the prime and maximal spectrum of the integer split quaternions and investigate integer-valued polynomials over this ring. We prove that the set of such polynomials forms a ring, and proceed to study its prime and maximal ideals. In particular we completely classify the primes above 0, we obtain partial characterizations of primes above odd prime integers, and we give sufficient conditions for building maximal ideals above 2.
引用
收藏
页码:182 / 196
页数:15
相关论文
共 50 条