On the Structure of L1 of a Vector Measure via its Integration Operator

被引:8
|
作者
Calabuig, J. M. [1 ]
Rodriguez, J. [2 ]
Sanchez-Perez, E. A. [1 ]
机构
[1] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, Valencia 46022, Spain
[2] Univ Murcia, Dept Matemat Aplicada, Fac Informat, E-30100 Murcia, Spain
关键词
Banach function space; integration operator; p-concave operator; positive p-summing operator; vector measure; SPACES; RESPECT;
D O I
10.1007/s00020-009-1670-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geometric and summability properties of the integration operator associated to a vector measure m can be translated in terms of structure properties of the space L-1(m). In this paper we study the cases of the integration operator being: (i) p-concave on L p( m), or (ii) positive p-summing on L-1(m) (where 1 <= p < infinity). We prove that (i) is equivalent to saying that L-1(m) contains continuously the L p space of a (non-negative scalar) control measure for m. On the other hand, we show that (ii) holds if and only if L-1(m) is order isomorphic to the L-1 space of a non-negative scalar measure.
引用
下载
收藏
页码:21 / 33
页数:13
相关论文
共 50 条
  • [1] On the Structure of L1 of a Vector Measure via its Integration Operator
    J. M. Calabuig
    J. Rodríguez
    E. A. Sánchez-Pérez
    Integral Equations and Operator Theory, 2009, 64 : 21 - 33
  • [2] Interpolation subspaces of L1 of a vector measure and norm inequalities for the integration operator
    Calabuig, J. M.
    Rodriguez, J.
    Sanchez-Perez, E. A.
    TOPICS IN COMPLEX ANALYSIS AND OPERATOR THEORY, 2012, 561 : 155 - +
  • [3] Summability in L1 of a vector measure
    Calabuig, J. M.
    Rodriguez, J.
    Sanchez-Perez, E. A.
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (04) : 507 - 519
  • [4] Compactness in L1 of a vector measure
    Calabuig, J. M.
    Lajara, S.
    Rodriguez, J.
    Sanchez-Perez, E. A.
    STUDIA MATHEMATICA, 2014, 225 (03) : 259 - 282
  • [5] Fractional integral operator for L1 vector fields and its applications
    Zhibing Zhang
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 559 - 569
  • [6] Positive Representations of L1 of a Vector Measure
    Ricardo del Campo
    Enrique A. Sánchez-Pérez
    Positivity, 2007, 11 : 449 - 459
  • [7] L1(μ) for vector-valued measure μ
    Iwo Labuda
    Positivity, 2010, 14 : 801 - 813
  • [8] Positive representations of L1 of a vector measure
    del Campo, Ricardo
    Sanchez-Perez, Enrique A.
    POSITIVITY, 2007, 11 (03) : 449 - 459
  • [9] Compactness of the integration operator associated with a vector measure
    Okada, S
    Ricker, WJ
    Rodríguez-Piazza, L
    STUDIA MATHEMATICA, 2002, 150 (02) : 133 - 149
  • [10] Dunford-Pettis type properties in L1 of a vector measure
    Rodriguez, Jose
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)