Development of a Leakage Flux-Controlled Reactor

被引:17
|
作者
Shen, S. [1 ]
Tang, Y. [1 ]
Ren, L. [1 ]
Song, M. [2 ]
Cao, K. [2 ]
Wang, D. [2 ]
Dong, H. [1 ]
Zhao, X. [1 ]
Chen, B. [3 ]
Xu, Y. [1 ]
Li, J. [1 ]
Shi, J. [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol, Wuhan 430074, Peoples R China
[2] Yunnan Elect Power Res Inst, Kunming 650217, Peoples R China
[3] Wuhan Univ, Sch Elect Engn, Wuhan 430074, Peoples R China
关键词
Controllable reactor; harmonic; loss; reactance; reactive power compensating;
D O I
10.1109/TASC.2013.2291156
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In order to flexibly compensate reactive power, it is necessary to develop a controllable reactor in long distance and ultrahigh voltage system. A leakage flux-controlled reactor (LFCR) is developed in this paper. The operation principles of LFCR are discussed in detail, and a 380 V single-phase LFCR prototype is developed. Relevant experiments have been done to test its performance. The results of the experiments indicate that LFCR has no harmonic and the reactance of LFCR is stable. Also, LFCR with two control windings can realize four kinds of reactance adjustment rates: 1.94%, 75.99%, 90.53%, and 99.05%.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Design and Verification Test of an HTS Leakage Flux-Controlled Reactor
    Ren, Li
    Wang, Zuoshuai
    Yan, Sinian
    Xu, Ying
    Shen, Shifeng
    Zhao, Xiang
    Dong, Hongda
    Chen, Lei
    [J]. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (03)
  • [2] Research on the Characteristics of a High-Temperature Superconducting Leakage Flux-Controlled Reactor
    Shen, Shifeng
    Wu, Xusheng
    Yan, Sinian
    Wang, Xiaona
    Ren, Li
    Yi, Xianglie
    Liu, Yang
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2022, 69 (10) : 10101 - 10111
  • [3] Flux-controlled quantum computation with Majorana fermions
    Hyart, T.
    van Heck, B.
    Fulga, I. C.
    Burrello, M.
    Akhmerov, A. R.
    Beenakker, C. W. J.
    [J]. PHYSICAL REVIEW B, 2013, 88 (03)
  • [4] A Flux-Controlled Logarithmic Memristor Model and Emulator
    Xudong Xie
    Liangji Zou
    Shiping Wen
    Zhigang Zeng
    Tingwen Huang
    [J]. Circuits, Systems, and Signal Processing, 2019, 38 : 1452 - 1465
  • [5] Mutual Transformation of Flux-Controlled and Charge-Controlled Memristors
    Biolek, Dalibor
    Kohl, Zdenek
    Vavra, Jiri
    Biolkova, Viera
    Bhardwaj, Kapil
    Srivastava, Mayank
    [J]. IEEE ACCESS, 2022, 10 : 68307 - 68318
  • [6] Properties of Quadratic Flux-Controlled and Charge-Controlled Memristor
    Guo, Qiang
    Gu, Weicheng
    Tao, Zhikuo
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCES IN MECHANICAL ENGINEERING AND INDUSTRIAL INFORMATICS, 2015, 15 : 1461 - 1465
  • [7] A Flux-Controlled Logarithmic Memristor Model and Emulator
    Xie, Xudong
    Zou, Liangji
    Wen, Shiping
    Zeng, Zhigang
    Huang, Tingwen
    [J]. CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2019, 38 (04) : 1452 - 1465
  • [8] A simple chaotic circuit with magnetic flux-controlled memristor
    Chunlai Li
    Yongyan Yang
    Jianrong Du
    Zhen Chen
    [J]. The European Physical Journal Special Topics, 2021, 230 : 1723 - 1736
  • [9] Newton observer for a nonlinear flux-controlled AMB system
    Mystkowski, Arkadiusz
    Kotta, Uelle
    Kaparin, Vadim
    [J]. PROCEEDINGS OF THE ESTONIAN ACADEMY OF SCIENCES, 2018, 67 (01) : 61 - 72
  • [10] Study of Fractional Flux-controlled Memristor Emulator Connections
    Elsafty, Ahdulaziz H.
    Hamed, Esraa M.
    Fouda, Mohammed E.
    Said, Lobna A.
    Madian, Ahmed H.
    Radwan, Ahmed G.
    [J]. 2018 7TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2018,