Moving Particle Semi-implicit method coupled with Finite Element Method for hydroelastic responses of floating structures in waves

被引:13
|
作者
Zhang, Guanyu [1 ]
Zhao, Weiwen [1 ]
Wan, Decheng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Computat Marine Hydrodynam Lab CMHL, Shanghai 200240, Peoples R China
关键词
Moving Particle Semi-implicit (MPS); MPS-FEM coupled method; Wave-Structure Interaction (WSI); Flexible ship; FREE-SURFACE; NUMERICAL-SIMULATION; MPS METHOD; SLOSHING FLOWS; SPH MODEL; FLUID; HYDRODYNAMICS; BEHAVIOR; BODY; ALGORITHM;
D O I
10.1016/j.euromechflu.2022.04.005
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
In this paper, the Moving Particle Semi-implicit (MPS) method and Finite Element Method (FEM) coupling computational method is applied to solve the problem of hydroelastic response of floating structures. The MPS method, a Lagrangian meshfree method, is suitable for simulating violent flows such as breaking waves on free surface. For a floating structure like the ship hull and floating breakwater, the typical feature of motion is a large rigid-body motion plus a relatively small deformation. Therefore, a rigid-flexible coupling strategy based on MPS-FEM coupled method is developed. According to the choice of structural element, appropriate data transformation schemes are adopted on the fluid-structure interface. In this paper, the grouping exchange technique is developed, which is applied on the interface of particle model-beam element. The reliability of present method is verified through simulations of fluid-structure interaction (FSI) problems including water entry of the elastic wedge, water entry of the marine panel and dam-break wave impacting on a mooring flexible platform, the obtained numerical result is in good agreement with the published data. Afterwards, the coupling of fluid and structure solver is also tested by various problems including the cases of three-dimensional deformable floating platform/ship slamming in waves.
引用
下载
收藏
页码:63 / 82
页数:20
相关论文
共 50 条
  • [1] Moving Particle Semi-Implicit and Finite Element Method Coupled Analysis for Brain Shift Estimation
    Ema, Akito
    Chen, Xiaoshuai
    Sase, Kazuya
    Tsujita, Teppei
    Konno, Atsushi
    JOURNAL OF ROBOTICS AND MECHATRONICS, 2022, 34 (06) : 1306 - 1317
  • [2] A free surfacetraced method for moving particle semi-implicit method
    Pan, Xu-Jie
    Zhang, Huai-Xin
    Sun, Xue-Yao
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2010, 44 (01): : 134 - 138
  • [3] Improvement of moving particle semi-implicit method for simulation of progressive water waves
    Wang, Lizhu
    Jiang, Qin
    Zhang, Changkuan
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2017, 85 (02) : 69 - 89
  • [4] Numerical analysis of breaking waves using the moving particle semi-implicit method
    Koshizuka, S
    Nobe, A
    Oka, Y
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1998, 26 (07) : 751 - 769
  • [5] Implementation of the moving particle semi-implicit method on GPU
    ZHU XiaoSong1
    2 School of Civil and Resource Engineering
    3 Centre for Deepwater Engineering
    Science China(Physics,Mechanics & Astronomy), 2011, Mechanics & Astronomy)2011 (03) : 523 - 532
  • [6] Accuracy analysis of moving particle semi-implicit method
    Duan, Guang-Tao
    Chen, Bin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2011, 32 (SUPPL. 1): : 146 - 149
  • [7] Implementation of the moving particle semi-implicit method on GPU
    XiaoSong Zhu
    Liang Cheng
    Lin Lu
    Bin Teng
    Science China Physics, Mechanics and Astronomy, 2011, 54 : 523 - 532
  • [8] Improvement of stability in moving particle semi-implicit method
    Kondo, Masahiro
    Koshizuka, Seiichi
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 65 (06) : 638 - 654
  • [9] Implementation of the moving particle semi-implicit method on GPU
    Zhu XiaoSong
    Cheng Liang
    Lu Lin
    Teng Bin
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (03) : 523 - 532
  • [10] Semi-implicit formulation of the immersed finite element method
    Wang, Xingshi
    Wang, Chu
    Zhang, Lucy T.
    COMPUTATIONAL MECHANICS, 2012, 49 (04) : 421 - 430