Positivity-Preserving Runge-Kutta Discontinuous Galerkin Method on Adaptive Cartesian Grid for Strong Moving Shock

被引:15
|
作者
Liu, Jianming [1 ,2 ]
Qiu, Jianxian [3 ,4 ]
Goman, Mikhail [2 ]
Li, Xinkai [2 ]
Liu, Meilin [5 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
[2] De Montfort Univ, Fac Technol, Leicester LE1 9BH, Leics, England
[3] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Fujian Prov Key Lab Math Modeling & High Performa, Xiamen 361005, Peoples R China
[5] Shanghai Inst Satellite Engn, Shanghai 200240, Peoples R China
基金
美国国家科学基金会;
关键词
Discontinuous Galerkin method; adaptive Cartesian grid; positivity-preserving; immersed boundary method; complex geometry; FINITE-ELEMENT-METHOD; EMBEDDED BOUNDARY METHOD; GHOST-CELL METHOD; CONSERVATION-LAWS; SCHEMES; ROBUST; FLOWS;
D O I
10.4208/nmtma.2015.m1416
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to suppress the failure of preserving positivity of density or pressure, a positivity-preserving limiter technique coupled with h-adaptive Runge-Kutta discontinuous Galerkin (RKDG) method is developed in this paper. Such a method is implemented to simulate flows with the large Mach number, strong shock/obstacle interactions and shock diffractions. The Cartesian grid with ghost cell immersed boundary method for arbitrarily complex geometries is also presented. This approach directly uses the cell solution polynomial of DG finite element space as the interpolation formula. The method is validated by the well documented test examples involving unsteady compressible flows through complex bodies over a large Mach numbers. The numerical results demonstrate the robustness and the versatility of the proposed approach.
引用
收藏
页码:87 / 110
页数:24
相关论文
共 50 条
  • [1] POSITIVITY-PRESERVING ADAPTIVE RUNGE-KUTTA METHODS
    Nuesslein, Stephan
    Ranocha, Hendrik
    Ketcheson, David, I
    [J]. COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2021, 16 (02) : 155 - 179
  • [2] Adaptive Runge-Kutta discontinuous Galerkin method for complex geometry problems on Cartesian grid
    Liu, Jianming
    Qiu, Jianxian
    Hu, Ou
    Zhao, Ning
    Goman, Mikhail
    Li, Xinkai
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 73 (10) : 847 - 868
  • [3] AN APPLICATION OF RUNGE-KUTTA DISCONTINUOUS GALERKIN METHOD FOR FLOWS WITH STRONG DISCONTINUITIES
    Alpman, Emre
    [J]. ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2013, 33 (01) : 165 - 175
  • [4] Runge-Kutta discontinuous Galerkin method for interface flows with a maximum preserving limiter
    Franquet, Erwin
    Perrier, Vincent
    [J]. COMPUTERS & FLUIDS, 2012, 65 : 2 - 7
  • [5] A Runge-Kutta discontinuous Galerkin method for the Euler equations
    Tang, HZ
    Warnecke, G
    [J]. COMPUTERS & FLUIDS, 2005, 34 (03) : 375 - 398
  • [6] Optimal Strong-Stability-Preserving Runge-Kutta Time Discretizations for Discontinuous Galerkin Methods
    Kubatko, Ethan J.
    Yeager, Benjamin A.
    Ketcheson, David I.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (02) : 313 - 344
  • [7] A Runge-Kutta discontinuous Galerkin method for viscous flow equations
    Liu, Hongwei
    Xu, Kun
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 224 (02) : 1223 - 1242
  • [8] A weighted Runge-Kutta discontinuous Galerkin method for wavefield modelling
    He, Xijun
    Yang, Dinghui
    Wu, Hao
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 200 (03) : 1389 - 1410
  • [9] Runge-Kutta discontinuous Galerkin method for reactive multiphase flows
    Franquet, Erwin
    Perrier, Vincent
    [J]. COMPUTERS & FLUIDS, 2013, 83 : 157 - 163
  • [10] Runge-Kutta discontinuous Galerkin method using WENO limiters
    Qiu, JX
    Shu, CW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03): : 907 - 929