Double ring polariton condensates with polariton vortices

被引:4
|
作者
Sedov, Evgeny S. [1 ,2 ,3 ,5 ]
Lukoshkin, Vladimir A. [3 ,6 ]
Kalevich, Vladimir K. [3 ,6 ]
Chestnov, Igor Yu. [4 ,5 ]
Hatzopoulos, Zacharias [7 ]
Savvidis, Pavlos G. [1 ,2 ,7 ,8 ]
V. Kavokin, Alexey V. [1 ,2 ,3 ,9 ]
机构
[1] Westlake Univ, Sch Sci, Key Lab Quantum Mat Zhejiang Prov, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
[2] Westlake Inst Adv Study, Inst Nat Sci, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
[3] St Petersburg State Univ, Spin Opt Lab, Ulyanovskaya 1, St Petersburg 198504, Russia
[4] ITMO Univ, St Petersburg 197101, Russia
[5] Vladimir State Univ, 87 Gorky Str, Vladimir 600000, Russia
[6] Russian Acad Sci, Ioffe Inst, St Petersburg, Russia
[7] FORTH IESL, Iraklion, Crete, Greece
[8] Univ Crete, Dept Mat Sci & Technol, Iraklion, Crete, Greece
[9] Moscow Inst Phys & Technol, Dolgoprudnyi, Moscow Region, Russia
来源
关键词
polariton; exciton-polariton condensate; persisten current; micropillar; vortex; PERSISTENT CURRENTS; QUANTIZED VORTICES;
D O I
10.17586/2220-8054-2022-13-6-608-614
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We study formation of persistent currents of exciton polaritons in annular polariton condensates in a cylindrical micropillar cavity under the spatially localised nonresonant optical pumping. Since polariton condensates are strongly nonequilibrium systems, the trapping potential for polaritons, formed by the pillar edge and the reservoir of optically induced incoherent excitons, is not real in general case. Its imaginary part includes the spatially distributed gain from the pump and losses of polaritons in the condensate. We show that engineering the gain-loss balance in the micropillar plane gives one an access to the excited states of the polariton condensate. We demonstrate, both theoretically and experimentally, the formation of vortices in double concentric ring polariton condensates in the case of complex annular trap potential.
引用
收藏
页码:608 / 614
页数:7
相关论文
共 50 条
  • [1] VORTICES IN POLARITON CONDENSATES
    Deveaud-Pledran, Benoit
    Lagoudakis, Konstantinos
    Richard, Maxime
    Baas, Augustin
    Carusotto, Iacopo
    Andre, Regis
    Dang, Le Si
    11TH INTERNATIONAL CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS11), 2010, 210
  • [2] Half vortices in exciton polariton condensates
    Rubo, Yuri G.
    PHYSICAL REVIEW LETTERS, 2007, 99 (10)
  • [3] Vortex Multistability and Bessel Vortices in Polariton Condensates
    Ma, Xuekai
    Schumacher, Stefan
    PHYSICAL REVIEW LETTERS, 2018, 121 (22)
  • [4] Spiraling vortices in exciton-polariton condensates
    Ma, Xuekai
    Kartashov, Yaroslav, V
    Gao, Tingge
    Torner, Lluis
    Schumacher, Stefan
    PHYSICAL REVIEW B, 2020, 102 (04)
  • [5] Role of supercurrents on vortices formation in polariton condensates
    Anton, C.
    Tosi, G.
    Martin, M. D.
    Vina, L.
    Lemaitre, A.
    Bloch, J.
    OPTICS EXPRESS, 2012, 20 (15): : 16366 - 16373
  • [6] Stability and excitations of spontaneous vortices in polariton condensates
    Chen, Ting-Wei
    Chiang, Yu-Ling
    Cheng, Szu-Cheng
    Hsieh, Wen-Feng
    SOLID STATE COMMUNICATIONS, 2013, 165 : 6 - 10
  • [7] Chiral condensates in a polariton hexagonal ring
    Ma, Xuekai
    Kartashov, Yaroslav V.
    Kavokin, Alexey
    Schumacher, Stefan
    OPTICS LETTERS, 2020, 45 (20) : 5700 - 5703
  • [8] Hyperbolic spin vortices and textures in exciton–polariton condensates
    F. Manni
    Y. Léger
    Y.G. Rubo
    R. André
    B. Deveaud
    Nature Communications, 4
  • [9] Optical induced vortices and persistent currents in polariton condensates
    Tosi, G.
    Baudisch, M.
    Sanvitto, D.
    Vina, L.
    Lemaitre, A.
    Bloch, J.
    Karimi, E.
    Piccirillo, B.
    Marrucci, L.
    11TH INTERNATIONAL CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS11), 2010, 210
  • [10] Vortices in exciton-polariton condensates with polarization splitting
    Toledo Solano, M.
    Rubo, Yuri G.
    11TH INTERNATIONAL CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS11), 2010, 210