Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway

被引:16
|
作者
Bowling, J. Logan [1 ]
Skolfield, Mary Catherine [1 ]
Riley, Wesley A. [1 ]
Nolin, Andrew P. [1 ]
Wolf, Larissa C. [1 ]
Nelson, David E. [1 ]
机构
[1] Middle Tennessee State Univ, Dept Biol, Murfreesboro, TN 37132 USA
关键词
Cell signalling; Mitophagy; Parkin; PTEN-induced putative kinase 1 (PINK1); Ubiquitin; KAPPA-B DYNAMICS; DAMAGED MITOCHONDRIA; UBIQUITIN CHAIN; PARKIN; PINK1; ACTIVATION; MEMBRANE; OSCILLATIONS; RECRUITMENT; MITOPHAGY;
D O I
10.1186/s12860-019-0220-5
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background The PINK1:Parkin pathway regulates the autophagic removal of damaged and dysfunctional mitochondria. While the response of this pathway to complete loss of Delta psi m, as caused by high concentrations of mitochondrial ionophores, has been well characterized, it remains unclear how the pathway makes coherent decisions about whether to keep or purge mitochondria in situations where Delta psi m is only partially lost or exhibits fluctuations, as has been observed in response to certain types of cellular stress. Results To investigate the responses of the PINK1:Parkin pathway to mitochondrial insults of different magnitude and duration, controlled titration of the mitochondrial protonophore, CCCP, was used to manipulate Delta psi m in live cells, and the dynamics of PINK1 and Parkin recruitment was measured by fluorescence microscopy. In contrast to the stable accumulation of PINK1 and Parkin seen at completely depolarized mitochondria, partial depolarization produced a transient pulse of PINK1 stabilization and rapid loss, which was driven by small fluctuations in Delta psi m. As the rate of Parkin dissociation from the mitochondria and phospho-polyubiquitin chain removal was comparatively slow, repetitive pulses of PINK1 were able to drive a slow step-wise accumulation of Parkin and phospho-polyubiquitin leading to deferred mitophagy. Conclusion These data suggest that the PINK1:Parkin mitophagy pathway is able to exhibit distinct dynamic responses to complete and partial mitochondrial depolarization. In this way, the pathway is able to differentiate between irretrievably damaged mitochondria and those showing signs of dysfunction, promoting either rapid or delayed autophagy, respectively.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway
    J. Logan Bowling
    Mary Catherine Skolfield
    Wesley A. Riley
    Andrew P. Nolin
    Larissa C. Wolf
    David E. Nelson
    BMC Molecular and Cell Biology, 20
  • [2] Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway.
    Bowling, J. L.
    Skolfield, M. C.
    Riley, W. A.
    Nelson, D. E.
    MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (26)
  • [3] The PINK1/Parkin pathway regulates mitochondrial morphology
    Poole, Angela C.
    Thomas, Ruth E.
    Andrews, Laurie A.
    McBride, Heidi M.
    Whitworth, Alexander J.
    Pallanck, Leo J.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (05) : 1638 - 1643
  • [4] The PINK1/Parkin pathway: a mitochondrial quality control system?
    Alexander J. Whitworth
    Leo J. Pallanck
    Journal of Bioenergetics and Biomembranes, 2009, 41 : 499 - 503
  • [5] The PINK1/Parkin pathway: a mitochondrial quality control system?
    Whitworth, Alexander J.
    Pallanck, Leo J.
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2009, 41 (06) : 499 - 503
  • [6] Pink1/Parkin link inflammation, mitochondrial stress, and neurodegeneration
    Newman, Laura E.
    Shadel, Gerald S.
    JOURNAL OF CELL BIOLOGY, 2018, 217 (10): : 3327 - 3329
  • [7] Pink1 and parkin function in the same pathway to regulate mitochondrial function
    Guo, Ming
    Clark, Ira
    Dodson, Mark
    Jiang, Changan
    Cao, Joseph
    Feldman, Renny
    ANNALS OF NEUROLOGY, 2006, 60 (05) : 641 - 642
  • [8] PINK1-Parkin Pathway Activity Is Regulated by Degradation of PINK1 in the Mitochondrial Matrix
    Thomas, Ruth E.
    Andrews, Laurie A.
    Burman, Jonathon L.
    Lin, Wen-Yang
    Pallanck, Leo J.
    PLOS GENETICS, 2014, 10 (05):
  • [9] PINK1/PARKIN AND MITOCHONDRIAL DYNAMICS IN NEURODEGENERATION
    Guo, Ming
    FREE RADICAL BIOLOGY AND MEDICINE, 2017, 112 : 16 - 16
  • [10] PINK1 and Parkin converge in a common pathway in maintaining mitochondrial integrity and function
    Park, Jeehye
    Chung, Jongkyeong
    JOURNAL OF NEUROGENETICS, 2006, 20 (3-4) : 197 - 198