Sol-Gel-Derived Lithium Superionic Conductor Li1.5Al0.5Ge1.5(PO4)3 Electrolyte for Solid-State Lithium-Oxygen Batteries

被引:21
|
作者
Kichambare, Padmakar D. [1 ]
Howell, Thomas [1 ,2 ]
Rodrigues, Stanley [1 ]
机构
[1] Air Force Res Lab, Aerosp Syst Directorate, Wright Patterson AFB, OH 45433 USA
[2] GE Aviat, Cincinnati, OH 45215 USA
关键词
LAGP; lithium-oxygen batteries; solid electrolytes; sol-gel processing; superionic conductors; LISICON GLASS-CERAMICS; LI-AIR BATTERIES; ELECTROCHEMICAL PROPERTIES; CARBONATE ELECTROLYTES; IONIC-CONDUCTIVITY; LI-O-2; BATTERY; PERFORMANCE; CHALLENGES; CATHODES; CATALYST;
D O I
10.1002/ente.201300139
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Lithium aluminium germanium phosphate (LAGP) is attracting a great deal of attention as a solid electrolyte for lithium-oxygen (Li-O-2) batteries due to its high ionic conductivity. In this study, LAGP is prepared by a sol-gel process using comparatively low-cost GeCl2 as one of the reactants. The final product (LAGP) is obtained by sintering the dry precursor gel at 900 degrees C for 6 h. The influence of the duration of water evaporation during polymerization on the microstructure of LAGP has been examined. The structure, morphology, and electrochemical properties of LAGP are investigated by employing X-ray diffraction (XRD), scanning electron microscopy (SEM), nitrogen adsorption-desorption analysis, and electrochemical impedance spectroscopy. XRD studies confirm the formation of Li1.5Al0.5Ge1.5(PO4)(3) as a primary phase along with small amounts of AlPO4 and Li2O as impurity phases. LAGP specimens have ionic conductivities in the range of 10(-4) to 10(-5) Scm(-1) at room temperature. In addition, LAGP also exhibits electrocatalytic activity towards the oxygen-reduction and evolution reactions. These results demonstrate the potential of LAGP prepared by sol-gel processes as a solid electrolyte for lithium-ion conduction in solid-state lithium-oxygen batteries.
引用
收藏
页码:391 / 396
页数:6
相关论文
共 50 条
  • [1] Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3
    Feng, J. K.
    Lu, L.
    Lai, M. O.
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 501 (02) : 255 - 258
  • [2] Sol-gel synthesis of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Kotobuki, Masashi
    Koishi, Masaki
    CERAMICS INTERNATIONAL, 2015, 41 (07) : 8562 - 8567
  • [3] Li1.5Al0.5Ge1.5(PO4)3 membrane electrodialysis for lithium enrichment
    Jiang, Zhouyang
    Kong, Wenhan
    Zhao, Fenglin
    Han, Qingyue
    Liu, Yangxi
    Wang, Suqing
    Wang, Haihui
    JOURNAL OF MEMBRANE SCIENCE, 2023, 670
  • [4] Preparation and Lithium Ion Transport Behavior for Li1.5Al0.5Ge1.5 (PO4)3 Based Solid Composite Electrolyte
    Yu Tao
    Han Yu
    Wang Hui
    Xiong Shizhao
    Xie Kai
    Guo Qingpeng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2016, 37 (02): : 306 - 315
  • [5] Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Kunshina, G. B.
    Bocharova, I. V.
    Lokshin, E. P.
    INORGANIC MATERIALS, 2016, 52 (03) : 279 - 284
  • [6] Smart construction of multifunctional Li1.5Al0.5Ge1.5(PO4)3|Li intermediate interfaces for solid-state batteries
    Yu, Jiahao
    Liu, Qi
    Hu, Xia
    Wang, Shuwei
    Wu, Junru
    Liang, Bin
    Han, Cuiping
    Kang, Feiyu
    Li, Baohua
    ENERGY STORAGE MATERIALS, 2022, 46 : 68 - 75
  • [7] Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode
    Zhang, Zhihua
    Chen, Shaojie
    Yang, Jing
    Liu, Gaozhan
    Yao, Xiayin
    Cui, Ping
    Xu, Xiaoxiong
    ELECTROCHIMICA ACTA, 2019, 297 : 281 - 287
  • [8] Synthesis and conductivity studies of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    G. B. Kunshina
    I. V. Bocharova
    E. P. Lokshin
    Inorganic Materials, 2016, 52 : 279 - 284
  • [9] Cold sintering process of Li1.5Al0.5Ge1.5(PO4)3 solid electrolyte
    Berbano, Seth S.
    Guo, Jing
    Guo, Hanzheng
    Lanagan, Michael T.
    Randall, Clive A.
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2017, 100 (05) : 2123 - 2135
  • [10] Understanding the Reactivity of a Thin Li1.5Al0.5Ge1.5(PO4)3Solid-State Electrolyte toward Metallic Lithium Anode
    Paolella, Andrea
    Zhu, Wen
    Xu, Gui-Liang
    La Monaca, Andrea
    Savoie, Sylvio
    Girard, Gabriel
    Vijh, Ashok
    Demers, Hendrix
    Perea, Alexis
    Delaporte, Nicolas
    Guerfi, Abdelbast
    Liu, Xiang
    Ren, Yang
    Sun, Cheng-Jun
    Lu, Jun
    Amine, Khalil
    Zaghib, Karim
    ADVANCED ENERGY MATERIALS, 2020, 10 (32)