Numerical Radius Inequalities for Products of Hilbert Space Operators II

被引:1
|
作者
Abu-Omar, Amer [1 ]
机构
[1] Fahad Bin Sultan Univ, Coll Sci & Humanities, Tabuk, Saudi Arabia
关键词
Accretive; cramped; dissipative; numerical radius; numerical range;
D O I
10.1080/01630563.2019.1590400
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New estimates for the numerical radius of the product AX are given. These estimates refine the known estimate w(AX) <= 2 parallel to A parallel to w(X) when 0 is not an element of W(A) or 0 is not an element of W(X).
引用
下载
收藏
页码:127 / 133
页数:7
相关论文
共 50 条
  • [1] Numerical Radius Inequalities for Products of Hilbert Space Operators
    Hosseini, M. Shah
    Moosavi, B.
    JOURNAL OF MATHEMATICAL EXTENSION, 2022, 16 (12)
  • [2] NUMERICAL RADIUS INEQUALITIES FOR PRODUCTS OF HILBERT SPACE OPERATORS
    Abu-Omar, Amer
    Kittaneh, Fuad
    JOURNAL OF OPERATOR THEORY, 2014, 72 (02) : 521 - 527
  • [3] Some Numerical Radius Inequalities for Products of Hilbert Space Operators
    Hosseini, Mohsen Shah
    Moosavi, Baharak
    FILOMAT, 2019, 33 (07) : 2089 - 2093
  • [4] Numerical radius inequalities for Hilbert space operators. II
    El-Haddad, Mohammad
    Kittaneh, Fuad
    STUDIA MATHEMATICA, 2007, 182 (02) : 133 - 140
  • [5] Numerical Radius Inequalities for Hilbert Space Operators
    Alomari, Mohammad W.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2021, 15 (07)
  • [6] Numerical radius inequalities for Hilbert space operators
    Kittaneh, F
    STUDIA MATHEMATICA, 2005, 168 (01) : 73 - 80
  • [7] NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Al-Dolat, Mohammed
    Al-Zoubi, Khaldoun
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 1041 - 1049
  • [8] Numerical Radius Inequalities for Hilbert Space Operators
    Mohammad W. Alomari
    Complex Analysis and Operator Theory, 2021, 15
  • [9] Norm and numerical radius inequalities for Hilbert space operators
    Moosavi, Baharak
    Hosseini, Mohsen Shah
    JOURNAL OF ANALYSIS, 2023, 31 (02): : 1393 - 1400
  • [10] ON SOME NUMERICAL RADIUS INEQUALITIES FOR HILBERT SPACE OPERATORS
    Ghasvareh, Mahdi
    Omidvar, Mohsen Erfanian
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2021, 27 (02): : 192 - 197