None-Asphericity-Error Method for Magnetic Dipole Target Detection

被引:11
|
作者
Jin, H. H. [1 ,2 ]
Zhuang, Z. H. [1 ,2 ]
Wang, H. B. [1 ,2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Automat, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Asphericity error; localization; magnetic dipole; magnetic gradient tensor; LOCALIZATION;
D O I
10.1109/LGRS.2018.2827568
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
There is always a relative motion between the magnetometer and the magnetic target. Especially when both are moving, in certain scenarios, the magnetometer is demanded to have the capability of point-by-point and real-time positioning. In this letter, we deduce normalized gradient formulas based on the total field gradient (TFG) and the tensor module gradient (TMG) of the target, respectively. In addition, we analyze the capability of these two formulas to determine the direction of the target. Afterward, the none-asphericity-error method based on the union of aforementioned formulas (TFG-TMG) is proposed. Simulation results show that the union method has no asphericity error on magnetic target localization as well as evaluating the magnetic moment of' the target. Even in some noisy environment, the direction error is smaller than 1 degrees and the mean error of the magnetic moment is smaller than 5% of the magnetic moment of the target.
引用
收藏
页码:1294 / 1298
页数:5
相关论文
共 50 条
  • [1] Asphericity Errors Correction of Magnetic Gradient Tensor Invariants Method for Magnetic Dipole Localization
    Sui, Yangyi
    Li, Guang
    Wang, Shilong
    Lin, Jun
    IEEE TRANSACTIONS ON MAGNETICS, 2012, 48 (12) : 4701 - 4706
  • [2] Research on the asphericity error elimination of the invariant of magnetic gradient tensor
    Jun-Wei, Lu
    Cheng, Chi
    Zhen-Tao, Yu
    Bo, Bi
    Qing-Shan, Song
    ACTA PHYSICA SINICA, 2015, 64 (19)
  • [3] Detection algorithm for magnetic dipole target based on CEEMDAN and pattern recognition
    Du, Changping
    Xia, Mingyao
    Peng, Xiang
    Guo, Hong
    PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE OF INFORMATION AND COMMUNICATION TECHNOLOGY, 2021, 183 : 669 - 676
  • [4] Detection of Magnetic Dipole Target Signals by Using Convolution Neural Network
    Zhang, K. Y.
    Hu, M. K.
    Du, C. P.
    Xia, M. Y.
    2018 CROSS STRAIT QUAD-REGIONAL RADIO SCIENCE AND WIRELESS TECHNOLOGY CONFERENCE (CSQRWC), 2018,
  • [5] Detection of a Moving Magnetic Dipole Target Using Multiple Scalar Magnetometers
    Du, C. P.
    Xia, M. Y.
    Huang, S. X.
    Xu, Z. H.
    Peng, X.
    Guo, H.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (07) : 1166 - 1170
  • [6] Magnetic Dipole Target Signal Detection via Convolutional Neural Network
    Hu, Mengkai
    Jing, Sen
    Du, Changping
    Xia, Mingyao
    Peng, Xiang
    Guo, Hong
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Magnetic dipole signal detection and localization using subspace method
    Inaba, T
    Shima, A
    Konishi, M
    Yanagisawa, H
    Takada, J
    Araki, K
    ELECTRONICS AND COMMUNICATIONS IN JAPAN PART III-FUNDAMENTAL ELECTRONIC SCIENCE, 2002, 85 (05): : 23 - 34
  • [8] Capacitance-magnetic Detection Method of Armored Target
    Song C.
    Jiao Y.
    Liu X.
    Zhao H.
    Binggong Xuebao/Acta Armamentarii, 2021, 42 (11): : 2310 - 2320
  • [9] Target Positioning and Parameter Estimation of Magnetic Dipole Model With Nonlinear Least Square Method
    Li, Yuxiang
    Wang, Shuai
    Sun, Weimin
    2014 7TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP 2014), 2014, : 923 - 927
  • [10] Magnetic field intensity gradient method on the detection of a remote target
    Huan, Yingchun
    Lin, Chunsheng
    MECHATRONICS AND INTELLIGENT MATERIALS III, PTS 1-3, 2013, 706-708 : 845 - 848