Microwave CQED quantum tomography

被引:1
|
作者
Miroshnichenko, George P. [1 ]
机构
[1] ITMO Univ, St Petersburg 197101, Russia
来源
EUROPEAN PHYSICAL JOURNAL D | 2016年 / 70卷 / 12期
关键词
ONE-ATOM MASER; QUASI-PROBABILITY DISTRIBUTIONS; PHOTON-NUMBER TOMOGRAPHY; DENSITY-MATRIX; UNCERTAINTY RELATIONS; HOMODYNE DETECTION; RADIATION-FIELD; STATE ENDOSCOPY; WIGNER FUNCTION; CAVITY;
D O I
10.1140/epjd/e2016-70427-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present and numerically investigate the protocol of measuring the probability density of a rotated quadrature X(phi) of a microwave mode in an arbitrary quantum state, where. is a quadrature phase. The protocol is adapted to the measuring procedure used in the CQED ( Cavity Quantum Electrodynamics) experiments. The method is based on measuring the integral detection probability of detection of m atoms - probes in the excited state from the set of n atoms crossing the cavity. The relation between the random variables m - m(phi) and X - X(phi) is identified. The protocol describes the procedure of choosing parameters, such as interaction time, and the number of atoms in series n. The method contains a single fitting parameter that is selected in the process of numerical simulation. Quality selection is determined by Kolmogorov's test. The result of the calculation using the protocol is the convolution of the required distribution with the instrument function of the method. The parameters of the instrument function are described. Numerical simulations are performed for typical parameters of the experimental setup, showing the effectiveness of the proposed method.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Microwave quantum diode
    Rishabh Upadhyay
    Dmitry S. Golubev
    Yu-Cheng Chang
    George Thomas
    Andrew Guthrie
    Joonas T. Peltonen
    Jukka P. Pekola
    Nature Communications, 15
  • [42] Microwave Quantum Illumination
    Barzanjeh, Shabir
    Guha, Saikat
    Weedbrook, Christian
    Vitali, David
    Shapiro, Jeffrey H.
    Pirandola, Stefano
    PHYSICAL REVIEW LETTERS, 2015, 114 (08)
  • [43] Microwave quantum diode
    Upadhyay, Rishabh
    Golubev, Dmitry S.
    Chang, Yu-Cheng
    Thomas, George
    Guthrie, Andrew
    Peltonen, Joonas T.
    Pekola, Jukka P.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [44] Quantum Overlapping Tomography
    Cotler, Jordan
    Wilczek, Frank
    PHYSICAL REVIEW LETTERS, 2020, 124 (10)
  • [45] Quantum tomography of an electron
    T. Jullien
    P. Roulleau
    B. Roche
    A. Cavanna
    Y. Jin
    D. C. Glattli
    Nature, 2014, 514 : 603 - 607
  • [46] Tomography of quantum detectors
    Lundeen, J. S.
    Feito, A.
    Coldenstrodt-Ronge, H.
    Pregnell, K. L.
    Silberhorn, Ch.
    Ralph, T. C.
    Eisert, J.
    Plenio, M. B.
    Walmsley, I. A.
    NATURE PHYSICS, 2009, 5 (01) : 27 - 30
  • [47] Adaptive quantum tomography
    Straupe, S. S.
    JETP LETTERS, 2016, 104 (07) : 510 - 522
  • [48] Renormalized quantum tomography
    D'Ariano, G. M.
    Sacchi, M. F.
    PHYSICS LETTERS A, 2010, 374 (05) : 713 - 724
  • [49] Quantum zeno tomography
    Pascazio, S
    Facchi, P
    Hradil, Z
    Krenn, G
    Rehácek, J
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2001, 49 (10-11): : 1071 - 1076
  • [50] Quantum Network Tomography
    de Andrade, Matheus Guedes
    Navas, Jake
    Guha, Saikat
    Montano, Ines
    Raymer, Michael
    Smith, Brian
    Towsley, Don
    IEEE NETWORK, 2024, 38 (05): : 114 - 122