Microwave CQED quantum tomography

被引:1
|
作者
Miroshnichenko, George P. [1 ]
机构
[1] ITMO Univ, St Petersburg 197101, Russia
来源
EUROPEAN PHYSICAL JOURNAL D | 2016年 / 70卷 / 12期
关键词
ONE-ATOM MASER; QUASI-PROBABILITY DISTRIBUTIONS; PHOTON-NUMBER TOMOGRAPHY; DENSITY-MATRIX; UNCERTAINTY RELATIONS; HOMODYNE DETECTION; RADIATION-FIELD; STATE ENDOSCOPY; WIGNER FUNCTION; CAVITY;
D O I
10.1140/epjd/e2016-70427-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present and numerically investigate the protocol of measuring the probability density of a rotated quadrature X(phi) of a microwave mode in an arbitrary quantum state, where. is a quadrature phase. The protocol is adapted to the measuring procedure used in the CQED ( Cavity Quantum Electrodynamics) experiments. The method is based on measuring the integral detection probability of detection of m atoms - probes in the excited state from the set of n atoms crossing the cavity. The relation between the random variables m - m(phi) and X - X(phi) is identified. The protocol describes the procedure of choosing parameters, such as interaction time, and the number of atoms in series n. The method contains a single fitting parameter that is selected in the process of numerical simulation. Quality selection is determined by Kolmogorov's test. The result of the calculation using the protocol is the convolution of the required distribution with the instrument function of the method. The parameters of the instrument function are described. Numerical simulations are performed for typical parameters of the experimental setup, showing the effectiveness of the proposed method.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Entanglement Assisted Time-Energy QKD Employing Franson Interferometers and Cavity Quantum Electrodynamics (CQED) Principles
    Djordievic, Ivan B.
    Zhang, Yequn
    ADVANCES IN PHOTONICS OF QUANTUM COMPUTING, MEMORY, AND COMMUNICATION VIII, 2015, 9377
  • [22] Two proposals to protect a qubit using CQED techniques: Inequality between atomic velocity dispersion and losses of a quantum memory
    Lira, J.
    de Oliveira Jr, J. G. G.
    Peixoto de Faria, J. G.
    Nemes, M. C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 591
  • [23] Quantum advantage in microwave quantum radar
    R. Assouly
    R. Dassonneville
    T. Peronnin
    A. Bienfait
    B. Huard
    Nature Physics, 2023, 19 : 1418 - 1422
  • [24] Quantum advantage in microwave quantum radar
    Assouly, R.
    Dassonneville, R.
    Peronnin, T.
    Bienfait, A.
    Huard, B.
    NATURE PHYSICS, 2023, 19 (10) : 1418 - 1422
  • [25] Microwave-Induced Thermoacoustics: Assisting Microwave Tomography
    Zhu, Guangran
    Popovic, Milica
    Fang, Qianqian
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 1654 - 1657
  • [26] Microwave polarimetry tomography of wood
    Kaestner, AP
    Bååth, LB
    IEEE SENSORS JOURNAL, 2005, 5 (02) : 209 - 215
  • [27] MICROWAVE TOMOGRAPHY FOR BONE IMAGING
    Golnabi, Amir H.
    Meaney, Paul M.
    Geimer, Shireen
    Zhou, Tian
    Paulsen, Keith D.
    2011 8TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, 2011, : 956 - 959
  • [28] PHASE TOMOGRAPHY IN MICROWAVE DIAGNOSTICS
    ANDERSON, AP
    MEHDI, RA
    ELECTRONICS LETTERS, 1983, 19 (21) : 873 - 874
  • [29] COMPRESSIVE SAMPLING FOR MICROWAVE TOMOGRAPHY
    Autieri, R.
    D'Urso, M.
    Malanga, S.
    Pascazio, V.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 2873 - 2876
  • [30] TOMOGRAPHY APPLICATIONS IN MICROWAVE TECHNOLOGY
    VOSKRESENSKY, DI
    VORONIN, YN
    KAMINSKY, RP
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII RADIOELEKTRONIKA, 1989, 32 (02): : 4 - 18