3D Object Classification Using Scale Invariant Heat Kernels with Collaborative Classification

被引:0
|
作者
Abdelrahman, Mostafa [1 ]
El-Melegy, Moumen [1 ,2 ]
Farag, Aly [1 ]
机构
[1] Univ Louisville, Comp Vis & Image Proc Lab, Louisville, KY 40292 USA
[2] Assiut Univ, Dept Elect Engn, Assiut 71516, Egypt
关键词
Heat kernels; shape retrieval; collaborative classification; D shape descriptors; SHAPE; OPERATORS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
One of the major goals of computer vision is the development of flexible and efficient methods for shape representation. This paper proposes an approach for shape matching and retrieval based on scale-invariant heat kernel (HK). The approach uses a novel descriptor based on the histograms of the scale-invariant HK for a number of critical points on the shape at different time scales. We propose an improved method to introduce scale-invariance of HK to avoid noise-sensitive operations in the original method. A collaborative classification (CC) scheme is then employed for object classification. For comparison we compare our approach to well-known approaches on a standard benchmark dataset: the SHREC 2011. The results have indeed confirmed the high performance of the proposed approach on the shape retrieval problem.
引用
下载
收藏
页码:22 / 31
页数:10
相关论文
共 50 条
  • [1] 3d mixed invariant and its application on object classification
    Feng, S.
    Aouada, D.
    Krim, H.
    Kogan, I.
    2007 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL I, PTS 1-3, PROCEEDINGS, 2007, : 461 - +
  • [2] 3D object Classification using Bounding box
    Malwe, Gauri
    Kshirsagar, Deepak
    Madkaikar, Ashish
    2018 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING COMMUNICATION CONTROL AND AUTOMATION (ICCUBEA), 2018,
  • [3] 3D ResNets for 3D Object Classification
    Ioannidou, Anastasia
    Chatzilari, Elisavet
    Nikolopoulos, Spiros
    Kompatsiaris, Ioannis
    MULTIMEDIA MODELING (MMM 2019), PT I, 2019, 11295 : 495 - 506
  • [4] 3D object representation using transform and scale invariant 3D features
    Akagunduz, Erdem
    Ulusoy, Ilkay
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 55 - 62
  • [5] Towards object classification using 3D sensor data
    Schwertfeger, Soeren
    Poppinga, Jann
    Pfingsthorn, Max
    Birk, Andreas
    2008 ECSIS SYMPOSIUM ON LEARNING AND ADAPTIVE BEHAVIORS FOR ROBOTIC SYSTEMS - LAB-RS 2008, PROCEEDINGS, 2008, : 53 - 58
  • [6] 3D object recognition using scale-invariant features
    Jeonghun Lim
    Kunwoo Lee
    The Visual Computer, 2019, 35 : 71 - 84
  • [7] 3D object recognition using scale-invariant features
    Lim, Jeonghun
    Lee, Kunwoo
    VISUAL COMPUTER, 2019, 35 (01): : 71 - 84
  • [8] 3D object classification using multi-object Kohonen networks
    Corridoni, JM
    DelBimbo, A
    Landi, L
    PATTERN RECOGNITION, 1996, 29 (06) : 919 - 935
  • [9] Invariant Gaussian–Hermite Moments Based Neural Networks for 3D Object Classification
    Amal Zouhri
    Hicham Amakdouf
    Mostafa El Mallahi
    Ahmed Tahiri
    Zakia Lakhliai
    Driss Chenouni
    Hassan Qjidaa
    Pattern Recognition and Image Analysis, 2020, 30 : 87 - 96
  • [10] Optimized PointNet for 3D Object Classification
    Li, Zhuangzhuang
    Li, Wenmei
    Liu, Haiyan
    Wang, Yu
    Gui, Guan
    ADVANCED HYBRID INFORMATION PROCESSING, ADHIP 2019, PT I, 2019, 301 : 271 - 278