ON SIMPLE ZEROS OF THE DEDEKIND ZETA-FUNCTION OF A QUADRATIC NUMBER FIELD

被引:2
|
作者
Wu, Xiaosheng [1 ]
Zhao, Lilu [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230009, Anhui, Peoples R China
[2] Shandong Univ, Sch Math, Jinan 250100, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
11M06; 11M26; 11R42 (primary);
D O I
10.1112/S0025579319000196
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the number of non-trivial simple zeros of the Dedekind zeta function of a quadratic number field in the rectangle {sigma +it : 0 < sigma < 1, 0 < t < T}. We prove that such a number exceeds T6/7-epsilon if T is sufficiently large. This improves upon the classical lower bound T-6/11 established by Conrey et al [Simple zeros of the zeta function of a quadratic number field. I. Invent. Math. 86 (1986), 563-576].
引用
收藏
页码:851 / 861
页数:11
相关论文
共 50 条