ON ISOMETRIES FOR CONVOLUTIONAL CODES

被引:5
|
作者
Gluesing-Luerssen, Heide [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
Convolutional codes; strong isometries; state space realizations; weight adjacency matrix; monomial equivalence; MacWilliams Equivalence Theorem; EQUIVALENCE; TRELLIS; SPACES;
D O I
10.3934/amc.2009.3.179
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we will discuss isometries and strong isometries for convolutional codes. Isometries are weight-preserving module isomorphisms whereas strong isometries are, in addition, degree-preserving. Special cases of these maps are certain types of monomial transformations. We will show a form of MacWilliams Equivalence Theorem, that is, each isometry between convolutional codes is given by a monomial transformation. Examples show that strong isometries cannot be characterized this way, but special attention paid to the weight adjacency matrices allows for further descriptions. Various distance parameters appearing in the literature on convolutional codes will be discussed as well.
引用
收藏
页码:179 / 203
页数:25
相关论文
共 50 条
  • [1] On weak isometries of Preparata codes
    Mogil'nykh, I. Yu.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2009, 45 (02) : 145 - 150
  • [2] Symplectic isometries of stabilizer codes
    Pllaha, Tefjol
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (02)
  • [3] On weak isometries of Preparata codes
    I. Yu. Mogil’nykh
    [J]. Problems of Information Transmission, 2009, 45 : 145 - 150
  • [4] Permutation codes invariant under isometries
    Janiszczak, Ingo
    Lempken, Wolfgang
    Ostergard, Patric R. J.
    Staszewski, Reiner
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2015, 75 (03) : 497 - 507
  • [5] Permutation codes invariant under isometries
    Ingo Janiszczak
    Wolfgang Lempken
    Patric R. J. Östergård
    Reiner Staszewski
    [J]. Designs, Codes and Cryptography, 2015, 75 : 497 - 507
  • [6] LDPC Convolutional Codes Based on Braided Convolutional Codes
    Tavares, Marcos B. S.
    Lentmaier, Michael
    Zigangirov, Kamil Sh.
    Fettweis, Gerhard R.
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 1035 - +
  • [7] AUTOMORPHISM GROUPS AND ISOMETRIES FOR CYCLIC ORBIT CODES
    Gluesing-Luerssen, Heide
    Lehmann, Hunter
    [J]. ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2023, 17 (01) : 119 - 138
  • [8] CONCATENATED CODES WITH CONVOLUTIONAL INNER CODES
    JUSTESEN, J
    THOMMESEN, C
    ZYABLOV, VV
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1988, 34 (05) : 1217 - 1225
  • [9] Signal Codes: Convolutional Lattice Codes
    Shalvi, Ofir
    Sommer, Naftali
    Feder, Meir
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (08) : 5203 - 5226