Single polymer dynamics in elongational flow and the confluent Heun equation

被引:14
|
作者
Vincenzi, D. [1 ]
Bodenschatz, E.
机构
[1] Max Planck Inst Dynam & Selbstorg, D-37077 Gottingen, Germany
[2] Cornell Univ, Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, LASSP, Ithaca, NY 14853 USA
来源
关键词
D O I
10.1088/0305-4470/39/34/007
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the non-equilibrium dynamics of an isolated polymer in a stationary elongational flow. We compute the relaxation time to the steady-state configuration as a function of the Weissenberg number. A strong increase of the relaxation time is found around the coil-stretch transition, which is attributed to the large number of polymer configurations. The relaxation dynamics of the polymer is solved analytically in terms of a central two-point connection problem for the singly confluent Heun equation.
引用
收藏
页码:10691 / 10701
页数:11
相关论文
共 50 条
  • [1] Evolutionary dynamics and eigenspectrum of confluent Heun equation
    Jain, Kavita
    Devi, Archana
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (39)
  • [2] Single polymer dynamics in an elongational flow
    Perkins, TT
    Smith, DE
    Chu, S
    SCIENCE, 1997, 276 (5321) : 2016 - 2021
  • [3] Confluent Heun Equation and Confluent Hypergeometric Equation
    Slavyanov S.Y.
    Salatich A.A.
    Journal of Mathematical Sciences, 2018, 232 (2) : 157 - 163
  • [4] Confluent Heun equation with single added apparent singularity
    Kazakov, A. Ya.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DAYS ON DIFFRACTION 2016 (DD), 2016, : 207 - 211
  • [5] CONFLUENT EQUATIONS OF HEUN EQUATION
    DECARREAU, A
    MARONI, P
    ROBERT, A
    ANNALES DE LA SOCIETE SCIENTIFIQUE DE BRUXELLES SERIES 1-SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1978, 92 (03): : 151 - 189
  • [6] Symmetries of the Confluent Heun Equation
    A. Ya. Kazakov
    Journal of Mathematical Sciences, 2003, 117 (2) : 3918 - 3927
  • [7] Schrödinger equation as a confluent Heun equation
    Figueiredo, Bartolomeu Donatila Bonorino
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [8] Generalized confluent hypergeometric solutions of the Heun confluent equation
    Ishkhanyan, T. A.
    Ishkhanyan, A. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 338 : 624 - 630
  • [9] The Harmonic Lagrange Top and the Confluent Heun Equation
    Sean R. Dawson
    Holger R. Dullin
    Diana M. H. Nguyen
    Regular and Chaotic Dynamics, 2022, 27 : 443 - 459
  • [10] Integral relations for solutions of the confluent Heun equation
    El-Jaick, Lea Jaccoud
    Figueiredo, Bartolomeu D. B.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 : 885 - 904