Bayesian probabilistic modeling in pharmaceutical process development

被引:15
|
作者
Tabora, Jose E. [1 ]
Gonzalez, Federico Lora [1 ]
Tom, Jean W. [1 ]
机构
[1] Bristol Myers Squibb Co, Chem & Synthet Dev, Prod Dev, New Brunswick, NJ 08901 USA
关键词
Bayesian statistics; data science; design space; pharmaceutical; probabilistic modeling; process capability; process robustness; product specifications; QbD; quality by design; risk assessments; ICH Q8 DEFINITION; DESIGN SPACE; OPTIMIZATION; QUALITY; VARIABILITY; UNCERTAINTY; FORMULATION; TECHNOLOGY; FRAMEWORK; SAMPLER;
D O I
10.1002/aic.16744
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
[No abstract available]
引用
收藏
页数:11
相关论文
共 50 条
  • [2] Pharmaceutical process development: Kinetic investigations and modeling
    Dunn, Anna
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [3] Impact of modeling and simulation on pharmaceutical process development
    Kim, Junu
    Okamura, Kozue
    Gaddem, Mohamed Rami
    Hayashi, Yusuke
    Badr, Sara
    Sugiyama, Hirokazu
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2025, 47
  • [4] Bayesian data-driven models for pharmaceutical process development
    Chang, Hochan
    Domagalski, Nathan
    Tabora, Jose E.
    Tom, Jean W.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2024, 45
  • [5] Probabilistic Design space determination in pharmaceutical product development: A Bayesian/latent variable approach
    Bano, Gabriele
    Facco, Pierantonio
    Bezzo, Fabrizio
    Barolo, Massimiliano
    AICHE JOURNAL, 2018, 64 (07) : 2438 - 2449
  • [6] Pharmaceutical Process Modeling
    Alexander Russell
    Maxx Capece
    AAPS PharmSciTech, 23
  • [7] Pharmaceutical Process Modeling
    Russell, Alexander
    Capece, Maxx
    AAPS PHARMSCITECH, 2022, 23 (04)
  • [8] Probabilistic process monitoring with Bayesian regularization
    Zhang, Muguang
    Ge, Zhiqiang
    Song, Zhihuan
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 6999 - 7003
  • [9] Variational Bayesian probabilistic modeling framework for data-driven distributed process monitoring
    Jiang, Jiashi
    Jiang, Qingchao
    CONTROL ENGINEERING PRACTICE, 2021, 110
  • [10] Probabilistic model updating via variational Bayesian inference and adaptive Gaussian process modeling
    Ni, Pinghe
    Li, Jun
    Hao, Hong
    Han, Qiang
    Du, Xiuli
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 383 (383)