Kullback Leibler discrimination information;
Non parametric estimation;
Kernel density estimation;
Mean squared error (MSE);
Mean integrated squared error (MISE);
TESTING EXPONENTIALITY;
LINDLEY DISTRIBUTION;
RESIDUAL LIFE;
DENSITY;
D O I:
10.1016/j.spl.2019.06.007
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Kullback-Leibler discrimination information is the most well-known theoretic divergence measure between two probability distributions associated with the same experiment, which finds application in the field of information theory In the present paper, we propose non-parametric estimators for the Kullback-Leibler discrimination information for the lifetime distribution based on censored data. Asymptotic properties of the estimators are established under suitable regularity conditions. Monte-Carlo simulation studies are carried out to compare the performance of the estimators based on the mean-squared error. The method is illustrated using a real data set. (C) 2019 Elsevier B.V. All rights reserved.
机构:
Hokkaido Univ, Div Syst & Informat Engn, Kita Ku, Sapporo, Hokkaido 0608628, JapanHokkaido Univ, Div Syst & Informat Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan
Suzukawa, A
Imai, H
论文数: 0引用数: 0
h-index: 0
机构:
Hokkaido Univ, Div Syst & Informat Engn, Kita Ku, Sapporo, Hokkaido 0608628, JapanHokkaido Univ, Div Syst & Informat Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan
Imai, H
Sato, Y
论文数: 0引用数: 0
h-index: 0
机构:
Hokkaido Univ, Div Syst & Informat Engn, Kita Ku, Sapporo, Hokkaido 0608628, JapanHokkaido Univ, Div Syst & Informat Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan
SHI Jian Institute of Systems Science AMSS Chinese Academy of Sciences Beijing China TaiShing Lau Department of Statistics The Chinese University of Hong Kong Shatin NT Hong Kong China
论文数: 0引用数: 0
h-index: 0
SHI Jian Institute of Systems Science AMSS Chinese Academy of Sciences Beijing China TaiShing Lau Department of Statistics The Chinese University of Hong Kong Shatin NT Hong Kong China