An improved local error estimator for symmetric time-stepping schemes

被引:3
|
作者
Auzinger, Winfried [1 ]
Koch, Othmar [2 ]
机构
[1] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10-E101, A-1040 Vienna, Austria
[2] Univ Vienna, Inst Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Numerical time integration; One-step methods; Symmetric schemes; Local error estimation; SCHRODINGER-EQUATIONS; SPLITTING METHODS;
D O I
10.1016/j.aml.2018.03.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a symmetrized version of the defect to be used in the estimation of the local time-stepping error of symmetric one-step methods for the time propagation of linear autonomous evolution equations. Using the anti-commutator of the numerical flow and the right-hand side operator in the definition of the defect of the numerical approximation, a local error estimator is obtained which has higher accuracy asymptotically than an established version using the common defect. This theoretical result is illustrated for a splitting method applied to a linear Schrodinger equation. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:106 / 110
页数:5
相关论文
共 50 条
  • [2] Silent error detection in numerical time-stepping schemes
    Benson, Austin R.
    Schmit, Sven
    Schreiber, Robert
    [J]. INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2015, 29 (04): : 403 - 421
  • [3] Improved local time-stepping schemes for storm surge modeling on unstructured grids
    Liu, Guilin
    Ji, Tao
    Wu, Guoxiang
    Yu, Pubing
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 179
  • [4] Local Time-Stepping for Explicit Discontinuous Galerkin Schemes
    Gassner, Gregor
    Dumbser, Michael
    Hindenlang, Florian
    Munz, Claus-Dieter
    [J]. COMPUTATIONAL FLUID DYNAMICS 2010, 2011, : 171 - 177
  • [5] A priori local error estimation with adaptive time-stepping
    Ruge, P
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1999, 15 (07): : 479 - 491
  • [6] A SIMPLE ERROR ESTIMATOR AND ADAPTIVE TIME-STEPPING PROCEDURE FOR DYNAMIC ANALYSIS
    ZIENKIEWICZ, OC
    XIE, YM
    [J]. EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 1991, 20 (09): : 871 - 887
  • [7] A SIMPLE LOCAL ERROR ESTIMATOR AND AN ADAPTIVE TIME-STEPPING PROCEDURE FOR DIRECT INTEGRATION METHOD IN DYNAMIC ANALYSIS
    LI, XD
    ZENG, LF
    WIBERG, NE
    [J]. COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1993, 9 (04): : 273 - 292
  • [8] Time-stepping schemes for mechanical systems
    Acary, Vincent
    Brogliato, Bernard
    [J]. Lecture Notes in Applied and Computational Mechanics, 2008, 35 : 285 - 317
  • [9] Conservative explicit local time-stepping schemes for the shallow water equations
    Hoang, Thi-Thao-Phuong
    Leng, Wei
    Ju, Lili
    Wang, Zhu
    Pieper, Konstantin
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 382 : 152 - 176
  • [10] Symmetric error estimates for discontinuous Galerkin time-stepping schemes for optimal control problems constrained to evolutionary Stokes equations
    Chrysafinos, Konstantinos
    Karatzas, Efthimios N.
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2015, 60 (03) : 719 - 751