A Real-time 17-Scale Object Detection Accelerator with Adaptive 2000-Stage Classification in 65nm CMOS

被引:0
|
作者
Kim, Minkyu [1 ]
Mohanty, Abinash [1 ]
Kadetotad, Deepak [1 ]
Suda, Naveen [3 ]
Wei, Luning [2 ]
Saseendran, Pooja [1 ]
He, Xiaofei [2 ]
Cao, Yu [1 ]
Seo, Jae-sun [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
[2] Zhejiang Univ, Coll Comp Sci, Hangzhou, Zhejiang, Peoples R China
[3] ARM Inc, San Jose, CA USA
关键词
object detection; machine learning; classification; real-time; low-power; special-purpose accelerator;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an object detection accelerator that features many-scale (17), many-object (up to 50), multi-class (e.g., face, traffic sign), and high accuracy (average precision of 0.79/0.65 for AFW/BTSD datasets). Employing 10 gradient/color channels, integral features are extracted, and the results of 2,000 simple classifiers for rigid boosted templates are adaptively combined to make a strong classification. By jointly optimizing the algorithm and the hardware architecture, the prototype chip implemented in 65nm CMOS demonstrates real-time object detection of 13-35 frames per second with low power consumption of 22-160mW at 0.58-1.0V supply.
引用
收藏
页码:2038 / 2041
页数:4
相关论文
共 10 条
  • [1] A Real-time 17-Scale Object Detection Accelerator with Adaptive 2000-Stage Classification in 65nm CMOS
    Kim, Minkyu
    Mohanty, Abinash
    Kadetotad, Deepak
    Suda, Naveen
    Wei, Luning
    Saseendran, Pooja
    He, Xiaofei
    Cao, Yu
    Seo, Jae-Sun
    [J]. 2017 22ND ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2017, : 21 - 22
  • [2] A Real-Time 17-Scale Object Detection Accelerator With Adaptive 2000-Stage Classification in 65 nm CMOS
    Kim, Minkyu
    Mohanty, Abinash
    Kadetotad, Deepak
    Wei, Luning
    He, Xiaofei
    Cao, Yu
    Seo, Jae-Sun
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (10) : 3843 - 3853
  • [3] Hydra: An Accelerator for Real-Time Edge-Aware Permeability Filtering in 65nm CMOS
    Eggimann, M.
    Gloor, C.
    Scheidegger, F.
    Cavigelli, L.
    Schaffner, M.
    Smolic, A.
    Benini, L.
    [J]. 2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [4] Mutton Multipartite Real-time Classification and Detection Based on Single-stage Object Detection Algorithm
    Zhao S.
    Wang S.
    Hao G.
    Zhang Y.
    Yang H.
    [J]. Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (03): : 400 - 411
  • [5] AFSNet: Multi-Scale Adaptive Feature Scaling Convolutional Network for Real-time Object Detection
    Hague, Md Foysal
    Kang, Dae-Seong
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2020, 20 (06): : 216 - 222
  • [6] A 90nm 103.14 TOPS/W Binary-Weight Spiking Neural Network CMOS ASIC for Real-Time Object Classification
    Chuang, Po-Yao
    Tan, Pai-Yu
    Wu, Cheng-Wen
    Lu, Juin-Ming
    [J]. PROCEEDINGS OF THE 2020 57TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2020,
  • [7] A 49.5 mW Multi-Scale Linear Quantized Online Learning Processor for Real-Time Adaptive Object Detection
    Song, Seokchan
    Kim, Soyeon
    Park, Gwangtae
    Han, Donghyeon
    Yoo, Hoi-Jun
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (05) : 2443 - 2447
  • [8] Adaptive Scale and Correlative Attention PointPillars: An Efficient Real-Time 3D Point Cloud Object Detection Algorithm
    Zhai, Xinchao
    Gao, Yang
    Chen, Shiwei
    Yang, Jingshuai
    [J]. APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [9] YoloOW: A Spatial Scale Adaptive Real-Time Object Detection Neural Network for Open Water Search and Rescue From UAV Aerial Imagery
    Xu, Jianhao
    Fan, Xiangtao
    Jian, Hongdeng
    Xu, Chen
    Bei, Weijia
    Ge, Qifeng
    Zhao, Teng
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 1
  • [10] A 50MHz 5V 3W 90% Efficiency 3-Level Buck Converter with Real-Time Calibration and Wide Output Range for Fast-DVS in 65nm CMOS
    Liu, Xun
    Huang, Cheng
    Mok, Philip K. T.
    [J]. 2016 IEEE SYMPOSIUM ON VLSI CIRCUITS (VLSI-CIRCUITS), 2016,