TRACY-WIDOM DISTRIBUTION FOR THE LARGEST EIGENVALUE OF REAL SAMPLE COVARIANCE MATRICES WITH GENERAL POPULATION

被引:39
|
作者
Lee, Ji Oon [1 ]
Schnelli, Kevin [2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Math Sci, 291 Daehak Ro, Daejeon 34141, South Korea
[2] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
来源
ANNALS OF APPLIED PROBABILITY | 2016年 / 26卷 / 06期
基金
欧洲研究理事会;
关键词
Sample covariance matrix; Tracy-Widom distribution; edge universality; WIGNER MATRICES; UNIVERSALITY; STATISTICS; LIMIT; ENSEMBLES; FLUCTUATIONS; SIGNALS; EDGE;
D O I
10.1214/16-AAP1193
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider sample covariance matrices of the form Q = (Sigma X-1/2)((EX)-X-1/2)*, where the sample X is an M x N random matrix whose entries are real independent random variables with variance 1/N and where Sigma is an M x M positive-definite deterministic matrix. We analyze the asymptotic fluctuations of the largest resealed eigenvalue of Q when both M and N tend to infinity with N/M -> d is an element of (0, infinity). For a large class of populations Sigma in the sub-critical regime, we show that the distribution of the largest rescaled eigenvalue of Q is given by the type-1 Tracy-Widom distribution under the additional assumptions that (1) either the entries of X are i.i.d. Gaussians or (2) that Sigma is diagonal and that the entries of X have a sub-exponential decay.
引用
收藏
页码:3786 / 3839
页数:54
相关论文
共 50 条
  • [1] CONVERGENCE RATE TO THE TRACY-WIDOM LAWS FOR THE LARGEST EIGENVALUE OF SAMPLE COVARIANCE MATRICES
    Schnelli, Kevin
    Xu, Yuanyuan
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (01): : 677 - 725
  • [2] Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices
    El Karoui, Noureddine
    [J]. ANNALS OF PROBABILITY, 2007, 35 (02): : 663 - 714
  • [3] Tracy-Widom statistic for the largest eigenvalue of autoscaled real matrices
    Saccenti, Edoardo
    Smilde, Age K.
    Westerhuis, Johan A.
    Hendriks, Margriet M. W. B.
    [J]. JOURNAL OF CHEMOMETRICS, 2011, 25 (12) : 644 - 652
  • [4] Tracy-Widom law for the largest eigenvalue of sample covariance matrix generated by VARMA
    Tian, Boping
    Zhang, Yangchun
    Zhou, Wang
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2021, 10 (02)
  • [6] THE TRACY-WIDOM LAW FOR THE LARGEST EIGENVALUE OF F TYPE MATRICES
    Han, Xiao
    Pan, Guangming
    Zhang, Bo
    [J]. ANNALS OF STATISTICS, 2016, 44 (04): : 1564 - 1592
  • [7] Tracy-Widom limit for the largest eigenvalue of high-dimensional covariance matrices in elliptical distributions
    Wen Jun
    Xie Jiahui
    Yu Long
    Zhou Wang
    [J]. BERNOULLI, 2022, 28 (04) : 2941 - 2967
  • [8] Convergence Rate to the Tracy-Widom Laws for the Largest Eigenvalue of Wigner Matrices
    Schnelli, Kevin
    Xu, Yuanyuan
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2022, 393 (02) : 839 - 907
  • [9] Quantitative Tracy-Widom laws for the largest eigenvalue of generalized Wigner matrices
    Schnelli, Kevin
    Xu, Yuanyuan
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [10] Sensor Fault Detection by Testing the Largest Eigenvalue of the Innovation Covariance Using Tracy-Widom Distribution
    Hajiyev, Ch.
    [J]. 2010 AMERICAN CONTROL CONFERENCE, 2010, : 5427 - 5432