Soil Moisture Remote Sensing: State-of-the-Science

被引:234
|
作者
Mohanty, Binayak P. [1 ]
Cosh, Michael H. [2 ]
Lakshmi, Venkat [3 ]
Montzka, Carsten [4 ]
机构
[1] Texas A&M Univ, Dept Biol & Agr Engn, College Stn, TX 77843 USA
[2] USDA ARS, Hydrol & Remote Sensing Lab, Beltsville, MD 20705 USA
[3] Univ South Carolina, Earth & Ocean Sci, Columbia, SC 29208 USA
[4] Forschungszentrum Julich, Inst Bio & Geosci, Agrosphere IBG 3, D-52428 Julich, Germany
关键词
WATER CONTENT; CATCHMENT SCALE; SMOS; RESOLUTION; VEGETATION; ASSIMILATION; PRODUCTS; NETWORK; RETRIEVAL; ALGORITHM;
D O I
10.2136/vzj2016.10.0105
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This is an update to the special section "Remote Sensing for Vadose Zone Hydrology-A Synthesis from the Vantage Point" [Vadose Zone Journal 12(3)]. Satellites (e.g., Soil Moisture Active Passive [SMAP] and Soil Moisture and Ocean Salinity [SMOS]) using passive microwave techniques, in particular at L-band frequency, have shown good promise for global mapping of near-surface (0-5-cm) soil moisture at a spatial resolution of 25 to 40 km and temporal resolution of 2 to 3 d. C- and X-band soil moisture records date back to 1978, making available an invaluable data set for long-term climate research. Near-surface soil moisture is further extended to the root zone (top 1 m) using process-based models and data assimilation schemes. Validation of remotely sensed soil moisture products has been ongoing using core monitoring sites, sparse monitoring networks, intensive field campaigns, as well as multi-satellite comparison studies. To transfer empirical observations across space and time scales and to develop improved retrieval algorithms at various resolutions, several efforts are underway to associate soil moisture variability dynamics with land surface attributes in various energy-and water-rich environments. We describe the most recent scientific and technological advances in soil moisture remote sensing. We anticipate that remotely sensed soil moisture will find many applications in vadose zone hydrology in the coming decades.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Study on soil moisture remote sensing
    Shi, ZF
    Zhao, K
    IGARSS 2001: SCANNING THE PRESENT AND RESOLVING THE FUTURE, VOLS 1-7, PROCEEDINGS, 2001, : 2106 - 2108
  • [2] Microwave Remote Sensing of Soil Moisture
    Zeng, Jiangyuan
    Peng, Jian
    Zhao, Wei
    Ma, Chunfeng
    Ma, Hongliang
    REMOTE SENSING, 2023, 15 (17)
  • [3] METAANALYSIS - STATE-OF-THE-SCIENCE
    DICKERSIN, K
    BERLIN, JA
    EPIDEMIOLOGIC REVIEWS, 1992, 14 : 154 - 176
  • [4] GNSS Reflectometry for Remote Sensing of Soil Moisture
    Jia, Y.
    Savi, P.
    Pei, Y.
    Notarpietro, R.
    2015 IEEE 1ST INTERNATIONAL FORUM ON RESEARCH AND TECHNOLOGIES FOR SOCIETY AND INDUSTRY (RTSI 2015) PROCEEDINGS, 2015,
  • [5] Passive microwave remote sensing of soil moisture
    Njoku, EG
    Entekhabi, D
    JOURNAL OF HYDROLOGY, 1996, 184 (1-2) : 101 - 129
  • [6] STUDY OF MICROWAVE REMOTE SENSING OF THE SOIL MOISTURE
    赵柏林
    韩庆源
    李慧心
    Science in China,SerB, 1986, Ser.B1986 (01) : 57 - 66
  • [7] Remote sensing applications to hydrology: Soil moisture
    Jackson, TJ
    Schmugge, J
    Engman, ET
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1996, 41 (04): : 517 - 530
  • [8] A Perspective on Radar Remote Sensing of Soil Moisture
    Park, Sang-Eun
    KOREAN JOURNAL OF REMOTE SENSING, 2011, 27 (06) : 761 - 771
  • [9] Active passive remote sensing of soil moisture
    Lakshmi, V
    16TH CONFERENCE ON HYDROLOGY, 2002, : 70 - 75
  • [10] Soil Moisture Remote Sensing across Scales
    Rodriguez-Fernandez, Nemesio
    Al Bitar, Ahmad
    Colliander, Andreas
    Zhao, Tianjie
    REMOTE SENSING, 2019, 11 (02)