Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration

被引:36
|
作者
Essa, Khalid S. [1 ]
Munschy, Marc [2 ]
机构
[1] Cairo Univ, Dept Geophys, Giza, Egypt
[2] Univ Strasbourg, CNRS, EOST, Inst Phys Globe Strasbourg, Strasbourg, France
关键词
Particle swarm optimisation; second moving average; discrepancy; depth; mineral exploration; EULER DECONVOLUTION; DEPTH DETERMINATION; ANOMALIES; INVERSION; SHAPE; ALGORITHM; FIELD; DELINEATE; BODIES; SLAB;
D O I
10.1007/s12040-019-1143-4
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper describes a new method based on the particle swarm optimisation (PSO) technique for interpreting the second moving average (SMA) residual gravity anomalies. The SMA anomalies are deduced from the measured gravity data to eradicate the regional anomaly by utilising filters of consecutive window lengths (s-value). The buried structural parameters are the amplitude factor (A), depth (z), location (d) and shape (q) that are estimated from the PSO method. The discrepancy between the measured and the predictable gravity anomaly is estimated by the root mean square error. The PSO method is applied to two different theoretical and three real data sets from Cuba, Canada and India. The model parameters inferred from the method developed here are compared with the available geological and geophysical information.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Gravity data interpretation using the particle swarm optimisation method with application to mineral exploration
    Khalid S Essa
    Marc Munschy
    [J]. Journal of Earth System Science, 2019, 128
  • [2] Interpretation of Magnetic Data Through Particle Swarm Optimization: Mineral Exploration Cases Studies
    Khalid S. Essa
    Mahmoud Elhussein
    [J]. Natural Resources Research, 2020, 29 : 521 - 537
  • [3] Interpretation of Magnetic Data Through Particle Swarm Optimization: Mineral Exploration Cases Studies
    Essa, Khalid S.
    Elhussein, Mahmoud
    [J]. NATURAL RESOURCES RESEARCH, 2020, 29 (01) : 521 - 537
  • [4] Magnetic Data Interpretation Using a New R-Parameter Imaging Method with Application to Mineral Exploration
    Salah Mehanee
    Khalid S. Essa
    Zein E. Diab
    [J]. Natural Resources Research, 2021, 30 : 77 - 95
  • [5] Magnetic Data Interpretation Using a New R-Parameter Imaging Method with Application to Mineral Exploration
    Mehanee, Salah
    Essa, Khalid S.
    Diab, Zein E.
    [J]. NATURAL RESOURCES RESEARCH, 2021, 30 (01) : 77 - 95
  • [6] Exploration of the Conjecture of Bateman using Particle Swarm Optimisation and Grid Computing
    Cardenas-Montes, Miguel
    Gomez-Iglesias, Antonio
    Vega-Rodriguez, Miguel A.
    Morales-Ramos, Enrique
    [J]. EIGHTH INTERNATIONAL SYMPOSIUM ON PARALLEL AND DISTRIBUTED COMPUTING, PROCEEDINGS, 2009, : 143 - +
  • [7] Optimisation of Thin Shell Parts by Using Particle Swarm Optimisation (PSO) Method
    Hidayah, M. H. N.
    Shayfull, Z.
    Nasir, S. M.
    Sazli, S. M.
    Fathullah, M.
    [J]. 3RD ELECTRONIC AND GREEN MATERIALS INTERNATIONAL CONFERENCE 2017 (EGM 2017), 2017, 1885
  • [8] The application of particle swarm optimisation in organisational behaviour
    [J]. Zeng, J. (zengjianchao@263.net), 1600, Inderscience Enterprises Ltd., 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (06):
  • [9] Semi-supervised data clustering using particle swarm optimisation
    Daphne T. C. Lai
    Minami Miyakawa
    Yuji Sato
    [J]. Soft Computing, 2020, 24 : 3499 - 3510
  • [10] Semi-supervised data clustering using particle swarm optimisation
    Lai, Daphne T. C.
    Miyakawa, Minami
    Sato, Yuji
    [J]. SOFT COMPUTING, 2020, 24 (05) : 3499 - 3510