Context-Sensitive Sentiment Classification of Short Colloquial Text

被引:0
|
作者
Blenn, Norbert [1 ]
Charalampidou, Kassandra [1 ]
Doerr, Christian [1 ]
机构
[1] Delft Univ Technol, Dept Telecommun, Mekelweg 4, NL-2628 CD Delft, Netherlands
来源
NETWORKING 2012, PT I | 2012年 / 7289卷
关键词
Online Social Networks; Sentiment Analysis; Text Classification;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
The wide-spread popularity of online social networks and the resulting availability of data to researchers has enabled the investigation of new research questions, such as the analysis of information diffusion and how individuals are influencing opinion formation in groups. Many of these new questions however require an automatic assessment of the sentiment of user statements, a challenging task further aggravated by the unique communication style used in online social networks. This paper compares the sentiment classification performance of current analyzers against a human-tagged reference corpus, identifies the major challenges for sentiment classification in online social applications and describes a novel hybrid system that achieves higher accuracy in this type of environment.
引用
收藏
页码:97 / 108
页数:12
相关论文
共 50 条
  • [1] Context-Sensitive Neural Sentiment Classification
    Mokhtari, Shekoofeh
    Li, Tao
    Xie, Ning
    2018 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IRI), 2018, : 293 - 299
  • [2] Context-sensitive lexicon for imbalanced text sentiment classification using bidirectional LSTM
    M. R. Pavan Kumar
    Prabhu Jayagopal
    Journal of Intelligent Manufacturing, 2023, 34 : 2123 - 2132
  • [3] Context-sensitive lexicon for imbalanced text sentiment classification using bidirectional LSTM
    Kumar, M. R. Pavan
    Jayagopal, Prabhu
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (05) : 2123 - 2132
  • [4] Use of linguistic features in context-sensitive text classification
    Wong, Alex K. S.
    Lee, John W. T.
    Yeung, Daniel S.
    ADVANCES IN MACHINE LEARNING AND CYBERNETICS, 2006, 3930 : 701 - 710
  • [5] Context-Sensitive Twitter Sentiment Classification Using Neural Network
    Ren, Yafeng
    Zhang, Yue
    Zhang, Meishan
    Ji, Donghong
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 215 - 221
  • [6] Short text sentiment classification based on context reconstruction
    Yang, Zhen
    Lai, Ying-Xu
    Duan, Li-Juan
    Li, Yu-Jian
    Zidonghua Xuebao/Acta Automatica Sinica, 2012, 38 (01): : 55 - 67
  • [7] Sentiment Classification of Short Text Using Sentimental Context
    Zheng, Wenjie
    Xu, Zenan
    Rao, Yanghui
    Xie, Haoran
    Wang, Fu Lee
    Kwan, Reggie
    PROCEEDINGS OF 4TH INTERNATIONAL CONFERENCE ON BEHAVIORAL, ECONOMIC ADVANCE IN BEHAVIORAL, ECONOMIC, SOCIOCULTURAL COMPUTING (BESC), 2017,
  • [8] Using complex linguistic features in context-sensitive Text Classification techniques
    Wong, AKS
    Lee, JWT
    Yeung, DS
    PROCEEDINGS OF 2005 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-9, 2005, : 3183 - 3188
  • [9] CIDER: Context-sensitive polarity measurement for short-form text
    Young, James C.
    Arthur, Rudy
    Williams, Hywel T. P.
    PLOS ONE, 2024, 19 (04):
  • [10] Improving Short Text Classification Using Context-Sensitive Representations and Content-Aware Extended Topic Knowledge
    Ye, Zhihao
    Wen, Rui
    Chen, Xi
    Liu, Ye
    Zhang, Ziheng
    Li, Zhiyong
    Nai, Ke
    Zheng, Yefeng
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT II, 2021, 12713 : 93 - 105