Operation Strategies Based on Carbon Corrosion and Lifetime Investigations for High Temperature Polymer Electrolyte Membrane Fuel Cell Stacks

被引:18
|
作者
Kannan, A. [1 ,2 ]
Kaczerowski, J. [1 ]
Kabza, A. [1 ]
Scholta, J. [1 ]
机构
[1] Zentrum Sonnenenergie & Wasserstoff Forsch Baden, Helmholtzstr 8, D-89081 Ulm, Germany
[2] Tech Univ Denmark, Dept Energy Convers & Storage, Kemitorvet 207, DK-2800 Lyngby, Denmark
关键词
Accelerated Stress Testing; Carbon Corrosion; Degradation; Durability; Fuel Cell Electrode; HT-PEMFC; Lifetime Analysis; Micro CHP Systems; Start-stop; PHOSPHORIC-ACID; ELECTROCHEMICAL OXIDATION; DEGRADATION; BLACK; PERFORMANCE; DURABILITY; MECHANISMS; CATALYSTS; CATHODES; BEHAVIOR;
D O I
10.1002/fuce.201700096
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This paper is aimed to develop operation strategies or high temperature polymer electrolyte fuel cells (HT-PEMFCs) stacks in order to enhance the endurance by mitigating carbon oxidation reaction. The testing protocols are carefully designed to suit the operating cycle for the realistic application. A 5 cell co-flow stack is assembled with BASF Celtec((R)) P membrane electrode assembly (MEA) with an active area of 163.5 cm(2). The oxidation rate of carbon is systematically investigated employing potentiostatic experiments under variation of both cell voltage and temperature using on-line mass spectrometry. The experimental results show that more CO2 is measured for the open circuit voltage (OCV) operation, indicating that the lifetime of the stack is strongly affected by a factor of approximately 12-26 between OCV and 700 mV depending on temperature. Protective start-stop algorithms are developed to avoid the formation of aggressive cell potentials. The startup procedures let degrade the catalyst support to a higher extent than the stop procedures, which is presumably due to both OCV exposure and hydrogen front passing through the anode. A model for lifetime prediction is developed from carbon corrosion experiments and validated with a durability test for 1,562 cycle events.
引用
收藏
页码:287 / 298
页数:12
相关论文
共 50 条
  • [1] Modelling and evaluation of heating strategies for high temperature polymer electrolyte membrane fuel cell stacks
    Andreasen, Soren Juhl
    Kaer, Soren Knudsen
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (17) : 4655 - 4664
  • [2] Modelling and simulations of carbon corrosion during operation of a Polymer Electrolyte Membrane fuel cell
    Hu, Jingwei
    Sui, P. C.
    Kumar, Sanjiv
    Djilali, Ned
    [J]. ELECTROCHIMICA ACTA, 2009, 54 (23) : 5583 - 5592
  • [3] PBI derivatives: Polymer electrolyte fuel cell membrane for high temperature operation
    Kim, HJ
    Lim, TH
    [J]. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2004, 10 (07) : 1081 - 1085
  • [4] Neutron tomographic investigations of water distributions in polymer electrolyte membrane fuel cell stacks
    Markoetter, Henning
    Manke, Ingo
    Kuhn, Robert
    Arlt, Tobias
    Kardjilov, Nikolay
    Hentschel, Manfred P.
    Kupsch, Andreas
    Lange, Axel
    Hartnig, Christoph
    Scholta, Joachim
    Banhart, John
    [J]. JOURNAL OF POWER SOURCES, 2012, 219 : 120 - 125
  • [5] COOLING METHODS FOR HIGH TEMPERATURE POLYMER ELECTROLYTE FUEL CELL STACKS
    Supra, Jen
    Janssen, Holger
    Lehnert, Werner
    Stolten, Detlef
    [J]. INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION - 2012, VOL 6, PTS A AND B, 2013, : 855 - 864
  • [6] High Temperature Operation of a Solid Polymer Electrolyte Fuel Cell Stack Based on a New Ionomer Membrane
    Arico, A. S.
    Di Blasi, A.
    Brunaccini, G.
    Sergi, F.
    Dispenza, G.
    Andaloro, L.
    Ferraro, M.
    Antonucci, V.
    Asher, P.
    Buche, S.
    Fongalland, D.
    Hards, G. A.
    Sharman, J. D. B.
    Bayer, A.
    Heinz, G.
    Zandona, N.
    Zuber, R.
    Gebert, M.
    Corasaniti, M.
    Ghielmi, A.
    Jones, D. J.
    [J]. FUEL CELLS, 2010, 10 (06) : 1013 - 1023
  • [7] High temperature polymer electrolyte membrane fuel cell
    K.Scott
    M.Mamlouk
    [J]. 电池, 2006, (05) : 347 - 353
  • [8] High temperature operation of a solid polymer electrolyte fuel cell stack based on a new ionomer membrane
    Arico, A. S.
    Di Blasi, A.
    Brunaccini, G.
    Sergi, F.
    Antonucci, V.
    Asher, P.
    Buche, S.
    Fongalland, D.
    Hards, G. A.
    Sharman, J. D. B.
    Bayer, A.
    Heinz, G.
    Zuber, R.
    Gebert, M.
    Corasaniti, M.
    Ghielmi, A.
    Jones, D. J.
    [J]. PROTON EXCHANGE MEMBRANE FUEL CELLS 9, 2009, 25 (01): : 1999 - 2007
  • [9] Development of Polymer Electrolyte Fuel Cell for High Temperature Operation
    Shinoki, T.
    Yoshioka, S.
    Matsumoto, S.
    [J]. FUEL CELL SEMINAR 2007, 2008, 12 (01): : 93 - 99
  • [10] Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell
    Kwak, SH
    Yang, TH
    Kim, CS
    Yoon, KH
    [J]. SOLID STATE IONICS, 2003, 160 (3-4) : 309 - 315