Optimal infinite-horizon control for probabilistic Boolean networks

被引:212
|
作者
Pal, Ranadip [1 ]
Datta, Aniruddha
Dougherty, Edward R.
机构
[1] Texas A&M Univ, Dept Elect & Comp Engn, College Stn, TX 77843 USA
[2] Translat Genom Res Inst, Phoenix, AZ 85004 USA
基金
美国国家科学基金会;
关键词
altering steady state; genetic network intervention; infinite-horizon control; optimal control of probabilistic Boolean networks;
D O I
10.1109/TSP.2006.873740
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
External control of a genetic regulatory network is used for the purpose of avoiding undesirable states, such as those associated with disease. Heretofore, intervention has focused on finite-horizon control, i.e., control over a small number of stages. This paper considers the design of optimal infinite-horizon control for context-sensitive probabilistic Boolean networks (PBNs). It can also be applied to instantaneously random PBNs. The stationary policy obtained is independent of time and dependent on the current state. This paper concentrates on discounted problems with bounded cost per stage and on average-cost-per-stage problems. These formulations are used to generate stationary policies for a PBN constructed from melanoma gene-expression data. The results show that the stationary policies obtained by the two different formulations are capable of shifting the probability mass of the stationary distribution from undesirable states to desirable ones.
引用
收藏
页码:2375 / 2387
页数:13
相关论文
共 50 条
  • [1] Optimal infinite horizon control for probabilistic Boolean networks
    Pal, Ranadip
    Datta, Aniruddha
    Dougherty, Edward R.
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 668 - +
  • [2] Optimal control of probabilistic Boolean control networks: A scalable infinite horizon approach
    Kharade, Sonam
    Sutavani, Sarang
    Wagh, Sushama
    Yerudkar, Amol
    Del Vecchio, Carmen
    Singh, Navdeep
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (09) : 4945 - 4966
  • [3] Model Checking Optimal Infinite-horizon Control for Probabilistic Gene Regulatory Networks
    Wang, Lisong
    Feng, Tao
    Song, Junhua
    Guo, Zonghao
    Hu, Jun
    [J]. IEEE ACCESS, 2018, 6 : 77299 - 77307
  • [4] OPTIMAL INFINITE-HORIZON UNDISCOUNTED CONTROL OF FINITE PROBABILISTIC SYSTEMS
    PLATZMAN, LK
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1980, 18 (04) : 362 - 380
  • [5] Policy Iteration Approach to the Infinite Horizon Average Optimal Control of Probabilistic Boolean Networks
    Wu, Yuhu
    Guo, Yuqian
    Toyoda, Mitsuru
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (07) : 2910 - 2924
  • [6] PROBLEMS OF OPTIMAL INFINITE-HORIZON CONTROL
    PIUNOVSKIY, AB
    [J]. SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1990, 28 (06): : 65 - 71
  • [7] On infinite-horizon optimal control problems
    Effati, S
    Kamyad, V
    Kamyabi-Gol, RA
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (01): : 269 - 278
  • [8] Infinite-Horizon Optimal Control of Switched Boolean Control Networks With Average Cost: An Efficient Graph-Theoretical Approach
    Gao, Shuhua
    Sun, Changkai
    Xiang, Cheng
    Qin, Kairong
    Lee, Tong Heng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (04) : 2314 - 2328
  • [9] Infinite-horizon optimal control problems in economics
    Aseev, S. M.
    Besov, K. O.
    Kryazhimskiy, A. V.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2012, 67 (02) : 195 - 253
  • [10] Needle Variations in Infinite-Horizon Optimal Control
    Aseev, S. M.
    Veliov, V. M.
    [J]. VARIATIONAL AND OPTIMAL CONTROL PROBLEMS ON UNBOUNDED DOMAIN, 2014, 619 : 1 - 17