Generalized Meixner-Pollaczek polynomials

被引:4
|
作者
Kanas, Stanislawa [1 ]
Tatarczak, Anna [2 ]
机构
[1] Rzeszow Univ Technol, Dept Math, Rzeszow, Poland
[2] Maria Curie Sklodowska Univ Lublin, Dept Math, Lublin, Poland
关键词
Meixner-Pollaczek polynomials; difference equation; generating function; orthogonal polynomials; Fisher information; HEISENBERG ALGEBRA; HAHN POLYNOMIALS;
D O I
10.1186/1687-1847-2013-131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the generalized Meixner-Pollaczek (GMP) polynomials P-n(lambda)(x; theta, psi) of a variable x is an element of R and parameters lambda > 0, theta is an element of (0, pi), psi is an element of R, defined via the generating function G(lambda)(x; theta, psi; z) = 1/(1 - ze(i theta))(lambda-ix)(1-ze(i psi))(lambda+ix) = Sigma P-infinity(n=0)n(lambda)(x; theta, psi)z(n), vertical bar z vertical bar < 1. We find the three-term recurrence relation, the explicite formula, the hypergeometric representation, the difference equation and the orthogonality relation for GMP polynomials P-n(lambda) (x; theta, psi). Moreover, we study the special case of P-n(lambda) (x; theta, psi) corresponding to the choice psi = pi + theta and psi = pi - theta, which leads to some interesting families of polynomials. The limiting case (lambda -> 0) of the sequences of polynomials P-n(lambda) (x; theta, pi + theta) is obtained, and the orthogonality relation in the strip S = {z is an element of C : |F(z)| < 1} is shown.
引用
收藏
页数:14
相关论文
共 50 条