Numerical solution of reaction-diffusion systems of λ-ω type by trigonometrically fitted methods

被引:26
|
作者
D'Ambrosio, Raffaele [1 ]
Paternoster, Beatrice [1 ]
机构
[1] Univ Salerno, Dept Math, Fisciano, Sa, Italy
关键词
Reaction-diffusion equations; lambda-omega systems; Periodic plane wave solutions; Exponential fitting; Special purpose numerical methods; RUNGE-KUTTA METHODS; CELL-CYCLE; WAVES;
D O I
10.1016/j.cam.2015.08.012
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The numerical solution of reaction-diffusion equations of lambda-omega type, which are known to possess a one-parameter family of periodic plane wave solutions, is object of this paper. Due to the periodic character of such solutions, a special purpose numerical integration is here proposed, based on adapted finite differences. The adaptation occurs at the level of the problem, by a suitable spatial semi-discretization based on trigonometrically fitted finite differences. Numerical experiments confirming the effectiveness of the approach are given. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:436 / 445
页数:10
相关论文
共 50 条
  • [1] Parameter estimation in IMEX-trigonometrically fitted methods for the numerical solution of reaction-diffusion problems
    D'Ambrosio, Raffaele
    Moccaldi, Martina
    Paternoster, Beatrice
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2018, 226 : 55 - 66
  • [2] Dissipative trigonometrically fitted methods for the numerical solution of orbital problems
    Simos, TE
    [J]. NEW ASTRONOMY, 2004, 9 (01): : 59 - 68
  • [3] Exponentially-fitted and trigonometrically-fitted methods for the numerical solution of orbital problems
    Simos, TE
    [J]. NEW ASTRONOMY, 2003, 8 (05): : 391 - 400
  • [4] Numerical methods for stiff reaction-diffusion systems
    Chou, Ching-Shan
    Zhang, Yong-Tao
    Zhao, Rui
    Nie, Qing
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2007, 7 (03): : 515 - 525
  • [5] Trigonometrically-fitted multiderivative methods for the numerical solution of the radial Schrodinger equation
    Sakas, DP
    Simos, TE
    [J]. MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2005, 53 (02) : 299 - 320
  • [6] Trigonometrically fitted Runge-Kutta methods for the numerical solution of the Schrodinger equation
    Anastassi, ZA
    Simos, TE
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2005, 37 (03) : 281 - 293
  • [7] Trigonometrically Fitted Two Step Hybrid Methods for the Numerical Solution of the Schrodinger Equation
    Kalogiratou, Z.
    Monovasilis, Th.
    Ramos, Higinio
    Simos, T. E.
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [8] Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation
    Z.A. Anastassi
    T.E. Simos
    [J]. Journal of Mathematical Chemistry, 2005, 37 : 281 - 293
  • [9] An exponentially fitted and trigonometrically fitted method for the numerical solution of orbital problems
    Vigo-Aguiar, J
    Simos, TE
    [J]. ASTRONOMICAL JOURNAL, 2001, 122 (03): : 1656 - 1660
  • [10] STABILITY OF THE NUMERICAL-SOLUTION OF THE PERIODIC REACTION-DIFFUSION SYSTEMS
    GALEONE, L
    MASTROSERIO, C
    [J]. APPLIED NUMERICAL MATHEMATICS, 1985, 1 (04) : 315 - 324