Global Well-posedness of the Non-isentropic Full Compressible Magnetohydrodynamic Equations

被引:7
|
作者
Xu, Fu Yi [1 ,2 ]
Zhang, Xin Guang [3 ]
Wu, Yong Hong [4 ,5 ]
Caccetta, Lou [4 ]
机构
[1] China Inst Water Resources & Hydropower Res, State Key Lab Simulat & Regulat Water Cycle River, Beijing 100038, Peoples R China
[2] Shandong Univ Technol, Sch Sci, Zibo 255049, Peoples R China
[3] Yantai Univ, Sch Math & Informat Sci, Yantai 264005, Peoples R China
[4] Curtin Univ, Dept Math & Stat, Perth, WA 6845, Australia
[5] Zhongnan Univ Econ & Law, Dept Math, Wuhan 430073, Peoples R China
基金
中国博士后科学基金;
关键词
Global well-posedness; full compressible magnetohydrodynamic equations; Besov spaces; NAVIER-STOKES EQUATIONS; MAGNETO-HYDRODYNAMICS EQUATIONS; HEAT-CONDUCTIVE GASES/; CRITICAL SPACES; EXISTENCE; CRITERION; REGULARITY;
D O I
10.1007/s10114-016-4799-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we are concerned with Cauchy problem for the multi-dimensional (N >= 3) non-isentropic full compressible magnetohydrodynamic equations. We prove the existence and uniqueness of a global strong solution to the system for the initial data close to a stable equilibrium state in critical Besov spaces. Our method is mainly based on the uniform estimates in Besov spaces for the proper linearized system with convective terms.
引用
收藏
页码:227 / 250
页数:24
相关论文
共 50 条
  • [1] Global Well-posedness of the Non-isentropic Full Compressible Magnetohydrodynamic Equations
    Fu Yi XU
    Xin Guang ZHANG
    Yong Hong WU
    Lou CACCETTA
    Acta Mathematica Sinica,English Series, 2016, 32 (02) : 227 - 250
  • [2] Global well-posedness of the non-isentropic full compressible magnetohydrodynamic equations
    Fu Yi Xu
    Xin Guang Zhang
    Yong Hong Wu
    Lou Caccetta
    Acta Mathematica Sinica, English Series, 2016, 32 : 227 - 250
  • [3] Global Well-posedness of the Non-isentropic Full Compressible Magnetohydrodynamic Equations
    Fu Yi XU
    Xin Guang ZHANG
    Yong Hong WU
    Lou CACCETTA
    ActaMathematicaSinica, 2016, 32 (02) : 227 - 250
  • [4] Well-posedness of non-isentropic Euler equations with physical vacuum
    Geng, Yongcai
    Li, Yachun
    Wang, Dehua
    Xu, Runzhang
    INTERFACES AND FREE BOUNDARIES, 2019, 21 (02) : 231 - 266
  • [5] Global well-posedness to three-dimensional full compressible magnetohydrodynamic equations with vacuum
    Liu, Yang
    Zhong, Xin
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (06):
  • [6] Global well-posedness to three-dimensional full compressible magnetohydrodynamic equations with vacuum
    Yang Liu
    Xin Zhong
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [7] Global well-posedness of strong solutions to the magnetohydrodynamic equations of compressible flows
    Yang, Yong-Fu
    Gu, Xiaohua
    Dou, Changsheng
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 : 23 - 37
  • [8] Global Well-Posedness for the Full Compressible Navier-Stokes Equations
    Jinlu Li
    Zhaoyang Yin
    Xiaoping Zhai
    Acta Mathematica Scientia, 2022, 42 : 2131 - 2148
  • [9] Global well-posedness of the generalized magnetohydrodynamic equations
    Ye, Zhuan
    Zhao, Xiaopeng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (05):
  • [10] Global well-posedness of the generalized magnetohydrodynamic equations
    Zhuan Ye
    Xiaopeng Zhao
    Zeitschrift für angewandte Mathematik und Physik, 2018, 69