On refinement of the unit simplex using regular simplices

被引:9
|
作者
G.-Toth, B. [1 ]
Hendrix, E. M. T. [2 ]
Casado, L. G. [3 ]
Garcia, I. [4 ]
机构
[1] Budapest Univ Technol & Econ, Dept Differential Equat, Budapest, Hungary
[2] Wageningen Univ, Operat Res & Logist, NL-6700 AP Wageningen, Netherlands
[3] Univ Almeria, Dept Informat, Agrifood Campus Int Excellence CeiA3, Almeria, Spain
[4] Univ Malaga, Comp Architecture, E-29071 Malaga, Spain
关键词
Unit simplex; Branch and bound; Partition; Covering; BISECTION;
D O I
10.1007/s10898-015-0363-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A natural way to define branching in branch and bound (B&B) for blending problems is bisection. The consequence of using bisection is that partition sets are in general irregular. The question is how to use regular simplices in the refinement of the unit simplex. A regular simplex with fixed orientation can be represented by its center and size, facilitating storage of the search tree from a computational perspective. The problem is that a simplex defined in a space with dimension cannot be subdivided into regular subsimplices without overlapping. We study the characteristics of the refinement by regular simplices. The main challenge is to find a refinement with a good convergence ratio which allows discarding simplices in an overlapped and already evaluated region. As the efficiency of the division rule in B&B algorithms is instance dependent, we focus on the worst case behaviour, i.e. none of the branches are pruned. This paper shows that for this case surprisingly an overlapping regular refinement may generate less simplices to be evaluated than longest edge bisection. On the other hand, the number of evaluated vertices may be larger.
引用
收藏
页码:305 / 323
页数:19
相关论文
共 50 条
  • [1] On refinement of the unit simplex using regular simplices
    B. G.-Tóth
    E. M. T. Hendrix
    L. G. Casado
    I. García
    [J]. Journal of Global Optimization, 2016, 64 : 305 - 323
  • [2] Heuristics to Reduce the Number of Simplices in Longest Edge Bisection Refinement of a Regular n-Simplex
    Aparicio, Guillermo
    Casado, Leocadio G.
    G-Toth, Boglarka
    Hendrix, Eligius M. T.
    Garcia, Inmaculada
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT II, 2014, 8580 : 115 - +
  • [3] RANDOM PROJECTIONS OF REGULAR SIMPLICES
    AFFENTRANGER, F
    SCHNEIDER, R
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (03) : 219 - 226
  • [4] A statistical characterization of regular simplices
    Abramson, Ian
    Goldstein, Larry
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2006, 113 (08): : 750 - 752
  • [5] REGULAR SIMPLICES AND GAUSSIAN SAMPLES
    BARYSHNIKOV, YM
    VITALE, RA
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (02) : 141 - 147
  • [6] On the Minimum Number of Simplex Shapes in Longest Edge Bisection Refinement of a Regular n-Simplex
    Aparicio, Guillermo
    Casado, Leocadio G.
    Hendrix, Eligius M. T.
    Toth, Boglarka G. -
    Garcia, Inmaculada
    [J]. INFORMATICA, 2015, 26 (01) : 17 - 32
  • [7] Regular simplices passing through holes
    Maehara, Hiroshi
    Tokushige, Norihide
    [J]. GEOMETRIAE DEDICATA, 2010, 145 (01) : 19 - 32
  • [8] REGULAR SIMPLICES AND PERIODIC BILLIARD ORBITS
    Bedaride, Nicolas
    Rao, Michael
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (10) : 3511 - 3519
  • [9] Large regular simplices contained in a hypercube
    Maehara, Hiroshi
    Ruzsa, Imre Z.
    Tokushige, Norihide
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2009, 58 (01) : 121 - 126
  • [10] Gaussian samples, regular simplices, and exchangeability
    Baryshnikov, YM
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1997, 17 (03) : 257 - 261