Little Grothendieck's theorem for sublinear operators

被引:4
|
作者
Achour, D [1 ]
Mezrag, L [1 ]
机构
[1] Msilia Univ, Dept Math, Msila 28105, Algeria
关键词
Banach lattice; sublinear operator; p-summing operator; p-regular operator;
D O I
10.1016/j.jmaa.2004.04.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let SB(X, Y) be the set of the bounded sublinear operators from a Banach space X into a Banach lattice Y. Consider pi(2)(X, Y) the set of 2-summing sublinear operators. We study in this paper a variation of Grothendieck's theorem in the sublinear operators case. We prove under some conditions that every operator in SB(C(K), H) is in pi(2) (C(K), H) for any compact K and any Hilbert H. In the noncommutative case the problem is still open. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:541 / 552
页数:12
相关论文
共 50 条
  • [1] The little Grothendieck theorem and Khintchine inequalities for symmetric spaces of measurable operators
    Lust-Piquard, Francoise
    Xu, Quanhua
    JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 244 (02) : 488 - 503
  • [2] Little Grothendieck's theorem for real JB*-triples
    Peralta, AM
    MATHEMATISCHE ZEITSCHRIFT, 2001, 237 (03) : 531 - 545
  • [3] Little Grothendieck`s theorem for real JB*-triples
    Antonio M. Peralta
    Mathematische Zeitschrift, 2001, 237 : 531 - 545
  • [4] On optimality of constants in the Little Grothendieck Theorem
    Kalenda, Ondrej F. K.
    Peralta, Antonio M.
    Pfitzner, Hermann
    STUDIA MATHEMATICA, 2022, 264 (03) : 263 - 304
  • [5] Grothendieck's theorem for absolutely summing multilinear operators is optimal
    Pellegrino, D.
    Seoane-Sepulveda, J. B.
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (03): : 554 - 558
  • [6] GROTHENDIECK THEOREM AND FACTORIZATION OF OPERATORS IN JORDAN TRIPLES
    CHU, CH
    IOCHUM, B
    LOUPIAS, G
    MATHEMATISCHE ANNALEN, 1989, 284 (01) : 41 - 53
  • [8] An invariant version of the little Grothendieck theorem for Sobolev spaces
    Krystian Kazaniecki
    Piotr Pakosz
    Michał Wojciechowski
    Israel Journal of Mathematics, 2021, 244 : 33 - 47
  • [9] AN INVARIANT VERSION OF THE LITTLE GROTHENDIECK THEOREM FOR SOBOLEV SPACES
    Kazaniecki, Krystian
    Pakosz, Piotr
    Wojciechowski, Michal
    ISRAEL JOURNAL OF MATHEMATICS, 2021, 244 (01) : 33 - 47
  • [10] Generalization of the Grothendieck's theorem
    Al'perin, Mikhail
    Osipov, Alexander V.
    TOPOLOGY AND ITS APPLICATIONS, 2023, 338