Research on Knowledge Discovery in Knowledge Base

被引:0
|
作者
Yang Bing-ru [1 ]
Li Guang-yuan [1 ,2 ]
Liu Yong-bin [1 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Sch Informat Engn, Beijing, Peoples R China
[2] Guangxi Teachers Educ Univ, Sch Comp & Informat Engn, Nanning, Guangxi, Peoples R China
[3] Tianjin Univ Finance & Econ, Dept Informat & Comp Sci, Tianjin, Peoples R China
关键词
knowledge base; knowledge discovery; data mining; KDK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge discovery in knowledge base(KDK) is a new and important direction in data mining. Its results can be used to construct large knowledge base, and it is very important for knowledge obtaining which is a bottleneck in machine learning. In this paper, we discuss some issues related with KDK, which include the theoretical frameworks for KDK, modeling of KDK, and the key techniques of KDK, that provide theoretical support and directions for the further research on KDK.
引用
收藏
页码:413 / 417
页数:5
相关论文
共 11 条
  • [1] Bertalanffy Ludwigvon., 2003, GEN SYSTEM THEORY FD
  • [2] A theoretical framework for data mining: the "informational paradigm"
    Coppi, R
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 38 (04) : 501 - 515
  • [3] Fayyad UM., 2003, ACM SIGKDD EXPLORATI, V5, P191, DOI [10.1145/980972.981004, DOI 10.1145/980972.981004]
  • [4] Mannila H., 2000, SIGKDD Explor. Newsl, V1, P30, DOI [DOI 10.1145/846183.846191, 10.1145/846183.846191]
  • [5] Correlativity sets based theoretical frameworks of data mining
    Wang, XF
    Lu, J
    Wang, TR
    [J]. 2003 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-5, PROCEEDINGS, 2003, : 188 - 193
  • [6] Yang B. R., 2009, KNOWLEDGE DISCOVERY
  • [7] [杨炳儒 Yang Bingru], 2002, [中国工程科学, Engineering science], V4, P34
  • [8] [杨炳儒 Yang Bingru], 2002, [中国工程科学, Engineering science], V4, P41
  • [9] [杨炳儒 YANG BingRu], 2007, [自动化学报, Acta Automatica Sinica], V33, P151, DOI 10.1360/aas-007-0151
  • [10] KDK based double-basis fusion mechanism and its process model
    Yang, BR
    Shen, JT
    Song, W
    [J]. INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2005, 14 (03) : 399 - 423