Local Label Descriptor for Example Based Semantic Image Labeling

被引:0
|
作者
Yang, Yiqing [1 ]
Li, Zhouyuan [1 ]
Zhang, Li [1 ]
Murphy, Christopher [2 ]
Hoeve, Jim Ver [1 ]
Jiang, Hongrui [1 ]
机构
[1] Univ Wisconsin, Madison, WI 53706 USA
[2] Univ Calif Davis, Davis, CA USA
来源
关键词
RECOGNITION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we introduce the concept of local label descriptor, which is a concatenation of label histograms for each cell in a patch. Local label descriptors alleviate the label patch misalignment issue in combining structured label predictions for semantic image labeling. Given an input image, we solve for a label map whose local label descriptors can be approximated as a sparse convex combination of exemplar label descriptors in the training data, where the sparsity is regularized by the similarity measure between the local feature descriptor of the input image and that of the exemplars in the training data set. Low-level image over-segmentation can be incorporated into our formulation to improve efficiency. Our formulation and algorithm compare favorably with the baseline method on the CamVid and Barcelona datasets.
引用
收藏
页码:361 / 375
页数:15
相关论文
共 50 条
  • [1] A semantic region descriptor for local feature based image categorization
    Li, Teng
    Kweon, In-So
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 1333 - 1336
  • [2] Local image descriptor based on spectral embedding
    Yan, Pu
    Tang, Jun
    Zhu, Ming
    Liang, Dong
    IET COMPUTER VISION, 2015, 9 (02) : 278 - 289
  • [3] Image matching based on a local invariant descriptor
    Qin, L
    Gao, W
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 2937 - 2940
  • [4] Leveraging the Spatial Label Structure for Semantic Image Labeling using Random Forests
    Woellhaf, Manuel
    Haensch, Ronny
    Hellwich, Olaf
    PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS (VISIGRAPP 2018), VOL 5: VISAPP, 2018, : 193 - 200
  • [5] A robust local feature descriptor based on image contrast
    Yan, X.-J. (aimar_yxj@126.com), 1600, Science Press (36):
  • [6] A Fast Local Image Descriptor Based on Patch Quantization
    Tian, Tian
    Yang, Fan
    Zheng, Kun
    Yao, Hong
    Gao, Qian
    HUMAN CENTERED COMPUTING, HCC 2017, 2018, 10745 : 64 - 75
  • [7] Enhancing the Effectiveness of Local Descriptor based Image Matching
    Hossain, Md Tahmid
    Teng, Shyh Wei
    Zhang, Dengsheng
    Lim, Suryani
    Lu, Guojun
    2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 281 - 288
  • [8] A deformable local image descriptor
    Cheng, Hong
    Liu, Zicheng
    Zheng, Nanning
    Yang, Jie
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 287 - +
  • [9] A projection local image descriptor
    D. V. Sorokin
    A. S. Krylov
    Pattern Recognition and Image Analysis, 2012, 22 (2) : 380 - 385
  • [10] A local adaptive image descriptor
    Ishraque, S. M. Zahid
    Shoyaib, Mohammad
    Abdullah-Al-Wadud, M.
    Hoque, Md Monirul
    Chae, Oksam
    NEW REVIEW OF HYPERMEDIA AND MULTIMEDIA, 2013, 19 (3-4) : 286 - 298