Deep Learning Approaches for Data Augmentation and Classification of Breast Masses using Ultrasound Images

被引:0
|
作者
Al-Dhabyani, Walid [1 ]
Fahmy, Aly [1 ]
Gomaa, Mohammed [2 ]
Khaled, Hussien [2 ]
机构
[1] Cairo Univ, Fac Comp & Informat, Cairo, Egypt
[2] Cairo Univ, NCI, Cairo, Egypt
关键词
Generative Adversarial Networks (GAN); Convolutional Neural Network (CNN); deep learning; breast cancer; Transfer Learning (TL); data augmentation; ultrasound (US) imaging; cancer diagnosis; PERFORMANCE;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Breast classification and detection using ultrasound imaging is considered a significant step in computer-aided diagnosis systems. Over the previous decades, researchers have proved the opportunities to automate the initial tumor classification and detection. The shortage of popular datasets of ultrasound images of breast cancer prevents researchers from obtaining a good performance of the classification algorithms. Traditional augmentation approaches are firmly limited, especially in tasks where the images follow strict standards, as in the case of medical datasets. Therefore besides the traditional augmentation, we use a new methodology for data augmentation using Generative Adversarial Network (GAN). We achieved higher accuracies by integrating traditional with GAN-based augmentation. This paper uses two breast ultrasound image datasets obtained from two various ultrasound systems. The first dataset is our dataset which was collected from Baheya Hospital for Early Detection and Treatment of Women's Cancer, Cairo (Egypt), we name it (BUSI) referring to Breast Ultrasound Images (BUSI) dataset. It contains 780 images (133 normal, 437 benign and 210 malignant). While the Dataset (B) is obtained from related work and it has 163 images (110 benign and 53 malignant). To overcome the shortage of public datasets in this field, BUSI dataset will be publicly available for researchers. Moreover, in this paper, deep learning approaches are proposed to be used for breast ultrasound classification. We examine two different methods: a Convolutional Neural Network (CNN) approach and a Transfer Learning (TL) approach and we compare their performance with and without augmentation. The results confirm an overall enhancement using augmentation methods with deep learning classification methods (especially transfer learning) when evaluated on the two datasets.
引用
收藏
页码:618 / 627
页数:10
相关论文
共 50 条
  • [1] Deep learning approaches for data augmentation and classification of breast masses using ultrasound images
    Al-Dhabyani, Walid
    Fahmy, Aly
    Gomaa, Mohammed
    Khaled, Hussien
    [J]. International Journal of Advanced Computer Science and Applications, 2019, 10 (05): : 618 - 627
  • [2] A novel deep learning model for breast lesion classification using ultrasound Images: A multicenter data evaluation
    Sirjani, Nasim
    Oghli, Mostafa Ghelich
    Tarzamni, Mohammad Kazem
    Gity, Masoumeh
    Shabanzadeh, Ali
    Ghaderi, Payam
    Shiri, Isaac
    Akhavan, Ardavan
    Faraji, Mehri
    Taghipour, Mostafa
    [J]. PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2023, 107
  • [3] Ensemble Learning of Multiple Models Using Deep Learning for Multiclass Classification of Ultrasound Images of Hepatic Masses
    Nakata, Norio
    Siina, Tsuyoshi
    [J]. BIOENGINEERING-BASEL, 2023, 10 (01):
  • [4] Classification of Ultrasound Breast Images Using Fused Ensemble of Deep Learning Classifiers
    Nehary, E. A.
    Rajan, Sreeraman
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA 2022), 2022,
  • [5] Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images
    Shin, Seung Yeon
    Lee, Soochahn
    Yun, Il Dong
    Kim, Sun Mi
    Lee, Kyoung Mu
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (03) : 762 - 774
  • [6] Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning
    Felipe André Zeiser
    Cristiano André da Costa
    Tiago Zonta
    Nuno M. C. Marques
    Adriana Vial Roehe
    Marcelo Moreno
    Rodrigo da Rosa Righi
    [J]. Journal of Digital Imaging, 2020, 33 : 858 - 868
  • [7] Segmentation of Masses on Mammograms Using Data Augmentation and Deep Learning
    Zeiser, Felipe Andre
    da Costa, Cristiano Andre
    Zonta, Tiago
    Marques, Nuno M. C.
    Roehe, Adriana Vial
    Moreno, Marcelo
    Righi, Rodrigo da Rosa
    [J]. JOURNAL OF DIGITAL IMAGING, 2020, 33 (04) : 858 - 868
  • [8] Detection and classification of masses in breast ultrasound images
    Shi, Xiangjun
    Cheng, H. D.
    Hu, Liming
    Ju, Wen
    Tian, Jiawei
    [J]. DIGITAL SIGNAL PROCESSING, 2010, 20 (03) : 824 - 836
  • [9] Segmentation and Classification for Breast Cancer Ultrasound Images Using Deep Learning Techniques: A Review
    Jahwar, Alan Fuad
    Abdulazeez, Adnan Mohsin
    [J]. 2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 225 - 230
  • [10] A deep learning framework for supporting the classification of breast lesions in ultrasound images
    Han, Seokmin
    Kang, Ho-Kyung
    Jeong, Ja-Yeon
    Park, Moon-Ho
    Kim, Wonsik
    Bang, Won-Chul
    Seong, Yeong-Kyeong
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (19): : 7714 - 7728