A new class of minimax generalized Bayes estimators of a normal variance

被引:16
|
作者
Maruyama, Yuzo
Strawderman, William Edward
机构
[1] Univ Tokyo, Ctr Spatial Informat Sci, Bunkyo Ku, Tokyo 1130033, Japan
[2] Rutgers State Univ, Dept Stat, Piscataway, NJ 08854 USA
关键词
minimaxity; generalized Bayes; estimation of a normal variance;
D O I
10.1016/j.jspi.2005.05.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A new class of minimax generalized Bayes estimators of the variance of a normal distribution is given under both quadratic and entropy losses. One contribution of the paper is a new class of minimax generalized Bayes estimators of a particularly simple form. Another contribution is a class of minimax generalized Bayes procedures satisfying a Strawderman [1974. Minimax estimation of powers of the variance of a normal population under squared error loss. Ann. Statist. 2, 190-198]-type condition which do not satisfy a Brewster and Zidek [1974. Improving on equivariant estimators. Ann. Statist. 2, 21-38]-type condition. We indicate that the new class may have a noticeably larger region of substantial improvement over the usual estimator than Brewster and Zidek-type procedures. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:3822 / 3836
页数:15
相关论文
共 50 条