Crouzeix-Raviart and Raviart-Thomas finite-element error analysis on anisotropic meshes violating the maximum-angle condition

被引:4
|
作者
Ishizaka, Hiroki [1 ]
Kobayashi, Kenta [2 ]
Tsuchiya, Takuya [1 ]
机构
[1] Ehime Univ, Grad Sch Sci & Engn, Matsuyama, Ehime, Japan
[2] Hitotsubashi Univ, Grad Sch Business Adm, Kunitachi, Tokyo, Japan
关键词
Finite element; Raviart– Thomas; Crouzeix– Raviart; Anisotropic meshes;
D O I
10.1007/s13160-020-00455-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the piecewise linear nonconforming Crouzeix-Raviart and the lowest order Raviart-Thomas finite-element methods for the Poisson problem on three-dimensional anisotropic meshes. We first give error estimates of the Crouzeix-Raviart and the Raviart-Thomas finite-element approximate problems. We next present the equivalence between the Raviart-Thomas finite-element method and the enriched Crouzeix-Raviart finite-element method. We emphasize that we do not impose either shape-regular or maximum-angle condition during mesh partitioning. Numerical results confirm the results that we obtained.
引用
收藏
页码:645 / 675
页数:31
相关论文
共 34 条