Generating a smallest binary tree by proper selection of the longest edges to bisect in a unit simplex refinement

被引:8
|
作者
Salmeron, J. M. G. [1 ]
Aparicio, G. [1 ]
Casado, L. G. [1 ]
Garcia, I. [2 ]
Hendrix, E. M. T. [2 ,3 ]
G-Toth, B. [4 ]
机构
[1] Univ Almeria CeiA3, Dept Comp Sci, Almeria, Spain
[2] Univ Malaga, Comp Architecture Dept, Malaga, Spain
[3] Wageningen Univ, Wageningen, Netherlands
[4] Budapest Univ Technol & Econ, Dept Differential Equat, Budapest, Hungary
关键词
Regular simplex; Longest edge bisection; Branch-and-bound; Bisection sequence; Combinatorial optimization;
D O I
10.1007/s10878-015-9970-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In several areas like global optimization using branch-and-bound methods for mixture design, the unit n-simplex is refined by longest edge bisection (LEB). This process provides a binary search tree. For , simplices appearing during the refinement process can have more than one longest edge (LE). The size of the resulting binary tree depends on the specific sequence of bisected longest edges. The questions are how to calculate the size of one of the smallest binary trees generated by LEB and how to find the corresponding sequence of LEs to bisect, which can be represented by a set of LE indices. Algorithms answering these questions are presented here. We focus on sets of LE indices that are repeated at a level of the binary tree. A set of LEs was presented in Aparicio et al. (Informatica 26(1):17-32, 2015), for . An additional question is whether this set is the best one under the so-called -valid condition.
引用
收藏
页码:389 / 402
页数:14
相关论文
共 3 条
  • [1] Generating a smallest binary tree by proper selection of the longest edges to bisect in a unit simplex refinement
    J. M. G. Salmerón
    G. Aparicio
    L. G. Casado
    I. García
    E. M. T. Hendrix
    B. G.-Tóth
    [J]. Journal of Combinatorial Optimization, 2017, 33 : 389 - 402
  • [2] Parallel algorithms for computing the smallest binary tree size in unit simplex refinement
    Aparicio, G.
    Salmeron, J. M. G.
    Casado, L. G.
    Asenjo, R.
    Hendrix, E. M. T.
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2018, 112 : 166 - 178
  • [3] On Grid Aware Refinement of the Unit Hypercube and Simplex: Focus on the Complete Tree Size
    Casado, L. G.
    Hendrix, E. M. T.
    Salmeron, J. M. G.
    -Toth, B. G.
    Garcia, I.
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2017, PT III, 2017, 10406 : 165 - 180