THE AZIMUTHAL EQUIDISTANT PROJECTION FOR A FINSLER MANIFOLD BY THE EXPONENTIAL MAP

被引:0
|
作者
Innami, Nobuhiro [1 ]
Itokawa, Yoe [2 ]
Kondo, Toshiki [3 ]
Nagano, Tetsuya [4 ]
Shiohama, Katsuhiro [5 ]
机构
[1] Niigata Univ, Dept Math, Fac Sci, Niigata, Japan
[2] Fukuoka Inst Technol, Dept Informat & Commun Engn, Wajiro Higashi, Fukuoka, Japan
[3] Niigata Univ, Grad Sch Sci & Technol, Niigata, Japan
[4] Univ Nagasaki, Dept Informat Secur, Nagasaki, Japan
[5] Fukuoka Inst Technol, Wajiro Higashi, Fukuoka, Japan
关键词
Finsler manifold; cut locus; azimuthal equidistant projection; exponential map; CUT LOCUS; DISTANCE FUNCTION; CONJUGATE LOCI; SARD THEOREM;
D O I
10.2140/pjm.2020.308.73
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, F) be a geodesically forward complete Finsler manifold and p is an element of M. We observe how the preimage of a curve in M under exponential map at p can behave in the tangent space TpM at p, when the curve approaches a conjugate cut point of p without crossing the cut locus of p. After this investigation, we may regard the internal region of a tangent cut locus of p is an element of M as the development of M. We deal with isometry problems of Finsler manifolds and differentiability conditions of cut loci.
引用
收藏
页码:73 / 101
页数:29
相关论文
共 50 条