A TECHNIQUE TO DERIVE IMPROVED PROPER MOTIONS FOR KEPLER OBJECTS OF INTEREST

被引:6
|
作者
Benedict, G. Fritz [1 ]
Tanner, Angelle M. [2 ]
Cargile, Phillip A. [3 ,4 ]
Ciardi, David R. [5 ]
机构
[1] Univ Texas Austin, McDonald Observ, Austin, TX 78712 USA
[2] Mississippi State Univ, Dept Phys & Astron, Starkville, MS 39762 USA
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
[5] CALTECH, NASA, Exoplanet Sci Inst, Pasadena, CA 91125 USA
来源
ASTRONOMICAL JOURNAL | 2014年 / 148卷 / 06期
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
astrometry; planetary systems; proper motions; stars: distances; HUBBLE-SPACE-TELESCOPE; CANDIDATE EXOPLANET COMPANION; PRECISION RADIAL-VELOCITIES; GUIDANCE SENSOR 3; SKY SURVEY 2MASS; INTERFEROMETRIC ASTROMETRY; PLANET SYSTEMS; PARALLAXES; SELECTION; CATALOG;
D O I
10.1088/0004-6256/148/6/108
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We outline an approach yielding proper motions with higher precision than exists in present catalogs for a sample of stars in the Kepler field. To increase proper-motion precision, we combine first-moment centroids of Kepler pixel data from a single season with existing catalog positions and proper motions. We use this astrometry to produce improved reduced-proper-motion diagrams, analogous to a Hertzsprung-Russell (H-R) diagram, for stars identified as Kepler objects of interest. The more precise the relative proper motions, the better the discrimination between stellar luminosity classes. Using UCAC4 and PPMXL epoch 2000 positions (and proper motions from those catalogs as quasi-Bayesian priors), astrometry for a single test Channel (21) and Season (0) spanning 2 yr yields proper motions with an average per-coordinate proper-motion error of 1.0 mas yr(-1), which is over a factor of three better than existing catalogs. We apply a mapping between a reduced-proper-motion diagram and an H-R diagram, both constructed using Hubble Space Telescope parallaxes and proper motions, to estimate Kepler object of interest K-band absolute magnitudes. The techniques discussed apply to any future small-field astrometry as well as to the rest of the Kepler field.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Radio proper motions: Cas A & Kepler
    Koralesky, B
    Rudnick, L
    YOUNG SUPERNOVA REMNANTS, 2001, 565 : 275 - 278
  • [2] Proper motions in compact symmetric objects
    Polatidis, AG
    Conway, JE
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF AUSTRALIA, 2003, 20 (01): : 69 - 74
  • [3] Forecasted masses for 7000 Kepler Objects of Interest
    Chen, Jingjing
    Kipping, David M.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 473 (02) : 2753 - 2759
  • [4] ADAPTIVE OPTICS IMAGES OF KEPLER OBJECTS OF INTEREST
    Adams, E. R.
    Ciardi, D. R.
    Dupree, A. K.
    Gautier, T. N., III
    Kulesa, C.
    McCarthy, D.
    ASTRONOMICAL JOURNAL, 2012, 144 (02):
  • [5] FORWARD SHOCK PROPER MOTIONS OF KEPLER'S SUPERNOVA REMNANT
    Katsuda, S.
    Tsunemi, H.
    Uchida, H.
    Kimura, M.
    ASTROPHYSICAL JOURNAL, 2008, 689 (01): : 225 - 230
  • [6] PROPER MOTIONS OF ULTRAVIOLET-EXCESS OBJECTS
    NOGUCHI, T
    YUTANI, M
    MAEHARA, H
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1982, 34 (03) : 407 - 415
  • [7] PROPER MOTIONS OF HERBIG-HARO OBJECTS
    JONES, BF
    REVISTA MEXICANA DE ASTRONOMIA Y ASTROFISICA, 1983, 7 : 71 - 78
  • [8] Variability of transit light curves of Kepler objects of interest
    Arkhypov, O., V
    Khodachenko, M. L.
    Hanslmeier, A.
    ASTRONOMY & ASTROPHYSICS, 2020, 638
  • [9] DETECTION OF STARS WITHIN ∼0.8 in OF Kepler OBJECTS OF INTEREST
    Kolbl, Rea
    Marcy, Geoffrey W.
    Isaacson, Howard
    Howard, Andrew W.
    ASTRONOMICAL JOURNAL, 2015, 149 (01):
  • [10] GaiaHub: A Method for Combining Data from the Gaia and Hubble Space Telescopes to Derive Improved Proper Motions for Faint Stars
    del Pino, Andres
    Libralato, Mattia
    van der Marel, Roeland P.
    Bennet, Paul
    Fardal, Mark A.
    Anderson, Jay
    Bellini, Andrea
    Tony Sohn, Sangmo
    Watkins, Laura L.
    ASTROPHYSICAL JOURNAL, 2022, 933 (01):