VORTEX-INDUCED VIBRATION OF STEEL CATENARY RISER UNDER VESSEL MOTION

被引:0
|
作者
Wang, Jungao [1 ]
Fu, Shixiao [1 ]
Baarholm, Rolf [2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai 200030, Peoples R China
[2] STATOIL, Trondheim, Norway
关键词
Vortex-induced Vibration; Wave Propagation; Steel Catenary Riser; Vessel Motion; FATIGUE DAMAGE;
D O I
暂无
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
A truncated steel catenary riser (SCR) model was experimentally tested in the ocean basin by oscillating the top end of the model to simulate the heave and surge vessel motion in order to investigate the vortex-induced vibration (VIV) features. Out-of-plane VIV responses were generally analyzed revealing that although the root mean square (RMS) strain distributed rather broadband, the displacement was quite consistent within a narrowband from 0.2D to 0.3D, and the touch-down point (TDP) area was found not to be the place suffering the maximum out-of-plane VIV response due to near wall effects. What's more, strong wave propagations were firstly reported and summarized as a distinguished feature for VIV of a SCR under vessel motions, and further results reveal that wave propagation during the 'lift up' phase was quite different from that during 'push down' in terms of both wave speed and 'power-in' region location which is assumed to be caused by the tension variation along the model.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Dominant parameters for vortex-induced vibration of a steel catenary riser under vessel motion
    Wang, Jungao
    Fu, Shixiao
    Larsen, Carl Martin
    Baarholm, Rolf
    Wu, Jie
    Lie, Halvor
    OCEAN ENGINEERING, 2017, 136 : 260 - 271
  • [2] Evaluation of vortex-induced vibration of a steel catenary riser in steady current and vessel motion-induced oscillatory
    Wang, Jungao
    Fu, Shixiao
    Baarholm, Rolf
    JOURNAL OF FLUIDS AND STRUCTURES, 2018, 82 : 412 - 431
  • [3] Experimental investigation on vortex-induced force of a Steel Catenary Riser under in-plane vessel motion
    Zhang, Mengmeng
    Fu, Shixiao
    Liu, Chang
    Ren, Haojie
    Xu, Yuwang
    MARINE STRUCTURES, 2021, 78
  • [4] Experimental investigation on vortex-induced force of a Steel Catenary Riser under in-plane vessel motion
    Zhang, Mengmeng
    Fu, Shixiao
    Liu, Chang
    Ren, Haojie
    Xu, Yuwang
    Marine Structures, 2021, 78
  • [5] Experimental investigation on vortex-induced vibration of steel catenary riser
    Yu-ting Fan
    Hai-ying Mao
    Hai-yan Guo
    Qing-hai Liu
    Xiao-min Li
    China Ocean Engineering, 2015, 29 : 691 - 704
  • [6] Experimental Investigation on Vortex-Induced Vibration of Steel Catenary Riser
    范宇婷
    毛海英
    郭海燕
    刘庆海
    李效民
    ChinaOceanEngineering, 2015, 29 (05) : 691 - 704
  • [7] Experimental investigation on vortex-induced vibration of steel catenary riser
    Fan Yu-ting
    Mao Hai-ying
    Guo Hai-yan
    Liu Qing-hai
    Li Xiao-min
    CHINA OCEAN ENGINEERING, 2015, 29 (05) : 691 - 704
  • [8] Out-of-plane vortex-induced vibration of a steel catenary riser caused by vessel motions
    Wang, Jungao
    Fu, Shixiao
    Baarholm, Rolf
    Wu, Jie
    Larsen, Carl Martin
    OCEAN ENGINEERING, 2015, 109 : 389 - 400
  • [9] Fatigue damage of a steel catenary riser from vortex-induced vibration caused by vessel motions
    Wang, Jungao
    Fu, Shixiao
    Baarholm, Rolf
    Wu, Jie
    Larsen, Carl Martin
    MARINE STRUCTURES, 2014, 39 : 131 - 156
  • [10] New Model for Vortex-Induced Vibration of Catenary Riser
    Srinil, Narakorn
    Wiercigroch, Marian
    O'Brien, Patrick
    Lane, Michael
    PROCEEDINGS OF THE EIGHTH (2008) ISOPE PACIFIC/ASIA OFFSHORE MECHANICS SYMPOSIUM: PACOMS-2008, 2008, : 129 - +